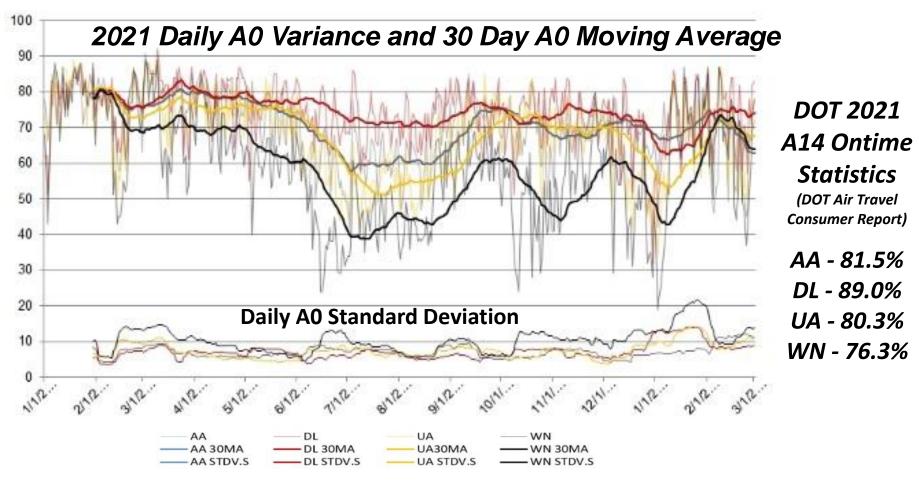


Rapid, Inexpensive Implementation

Our Points are Simple:

- 1. What we are currently doing to prevent airline delays, congestion and excess CO2 is not working.
- 2. The root cause of these problems are the easily solvable, highly random, "day of" point overloads of our airports and airspace.
- 3. Airlines and pilots must participate in the solution for an efficient outcome.
- 4. Our environment can no longer wait for airlines to stop wasting over 5% of their fuel and unnecessarily dumping the excess CO2 into our atmosphere.
- 5. GreenLandings™ is the only shovel ready, inexpensive, FAA, Embry-Riddle and GE Aviaiton validated solution that rapidly reduces delays, congestion and excess CO2.

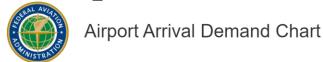

Not Working!

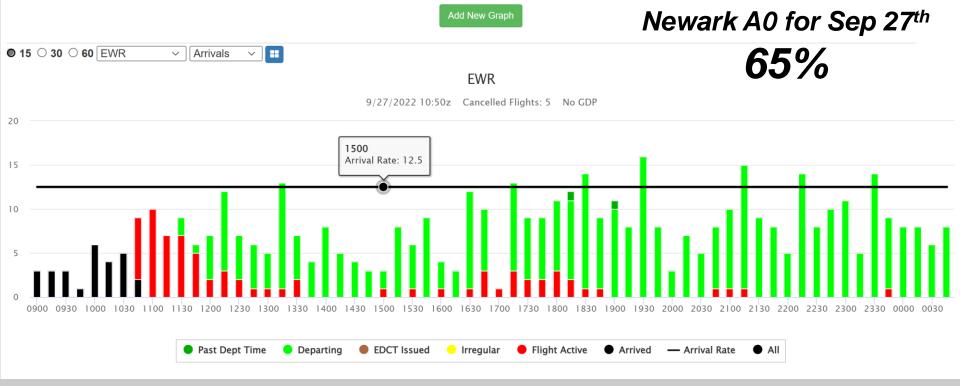
Airlines have consistently delivered 30% of their customers late for the last 40 years.

During this time:

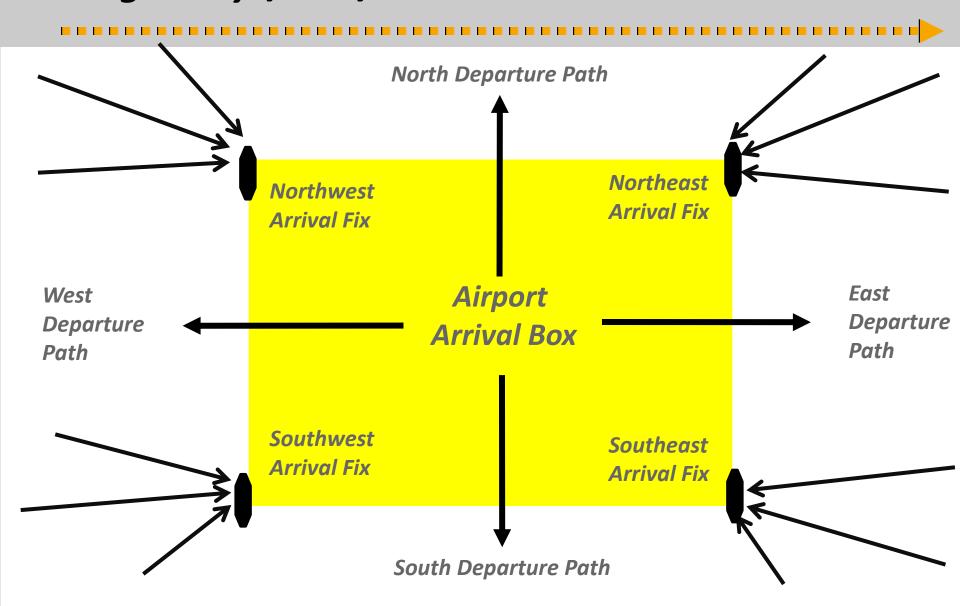
- ATC has continuously promised delay/congestion relief
- ATC has literally spent \$100s of Billions
- Airlines have spent \$100s of Billions on new aircraft/avionics
- Yet, the ATC solution is always 10 years and \$100 Billion into the future. This was true in 1980, 1990, 2000, 2010, and still true in 2022.

Airlines Desperately Need To Solve This

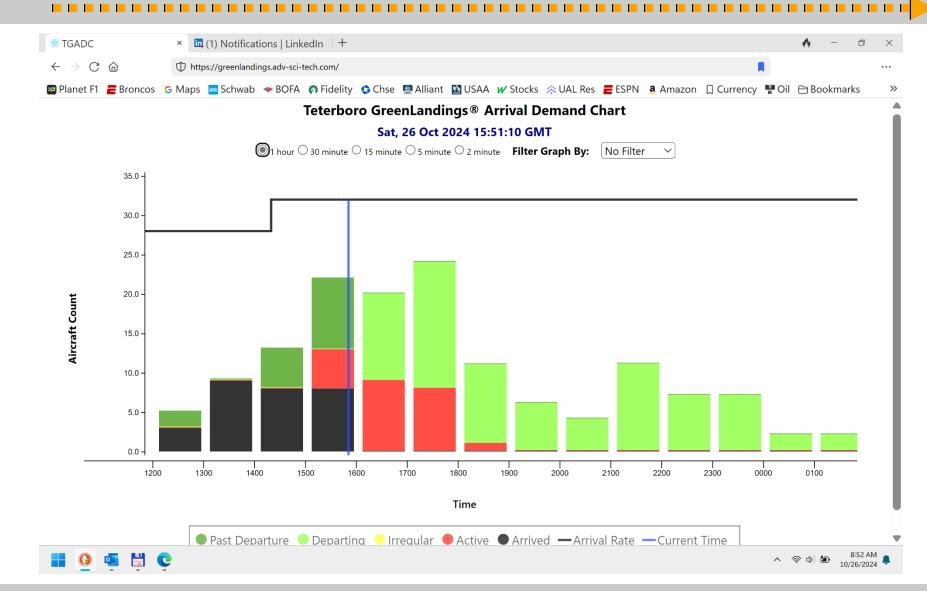

Customers Feel Variation, Not Averages


(Making Six Sigma Last, George Eckes, 2001)

Data/graph provided by AERA Air Ops View, RW Mann and Company and DOT Air Travel Consumer Reports

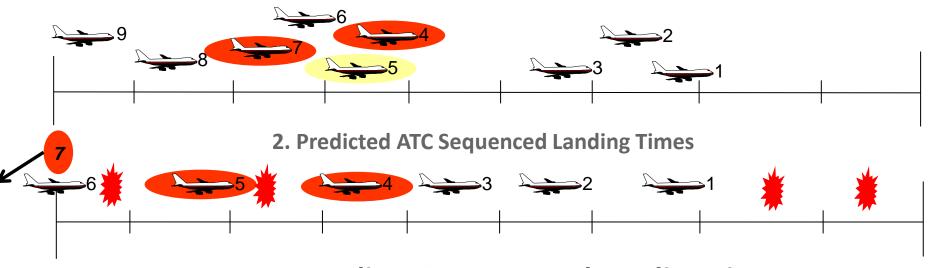

Capacity and Schedule Are Not The Problem

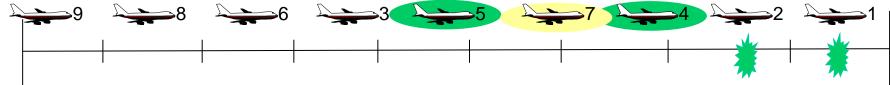
On Time, Uncongested Landing Capacity available forward in time



Cutting Delays/CO2/Noise - Don't Overload The Box

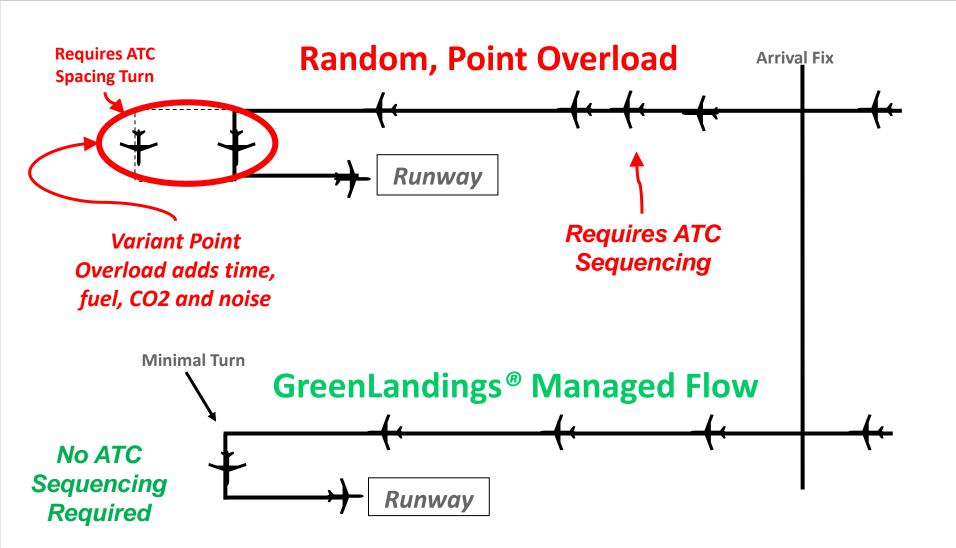
TEB Arrival Versus Demand


Short Bursts of Random Point Overloads


....................................

GreenLandings™ - Defect Prevention

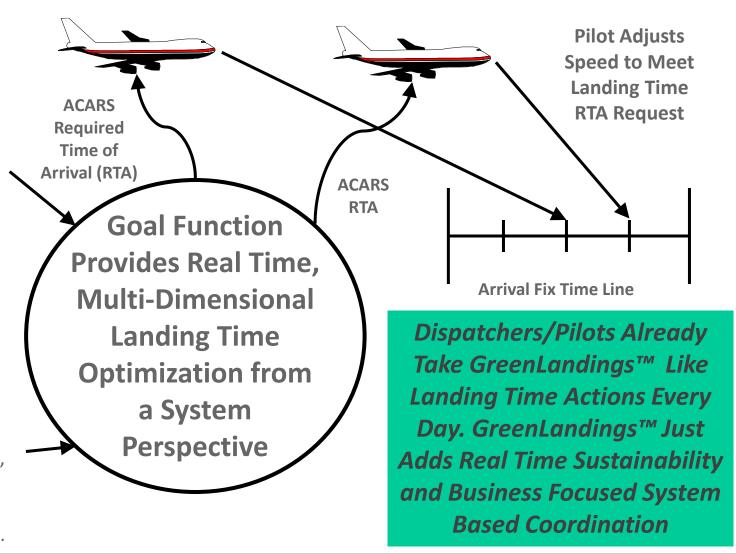
1. Predicted Random, Unaltered Landing Times



3. GreenLandings™ Sequenced Landing Times

- Real Time airline goals considered by GreenLandings™ Process
 - Aircraft #1 and #2 are early, but benefit entire queue by moving forward
 - Aircraft #4, #5 and #7 are late but managed to early
 - Aircraft #3 is slightly ahead of schedule and may be re-sequenced to remain OT
- Capacity Spoilage and Recovery

Variant Point Overloads Are Preventable


GreenLandings™ Operational Concept

Big Data "Day of" Predictions

Cornerpost, landing and gate ETA, enroute speed, altitude and path, weather, etc. (SWIM, Flt Plan, FMS, ADS-B/C, airport capacity, runway direction, etc.), starting hours prior to landing.

Airline "day of" Business Goals

CO2 Reduction, schedule, connections, gate availability, maintenance, crew legalities, weather, etc.

Copyright ATH Group, Inc., 2024-02 RMBaiada@GreenLandings.net, 303-521-

GreenLandings™ Potential

			•
Single Airline Annual GreenLandings Preventing CO2, Defects, Fuel Waste and Preventing CO2		ss	
Annual Crew Buffer Cost	\$	304,166,667	
Annual Defect Rework Cost	\$	113,150,000	
Annual Overnight Rework Cost 800 LB	\$	169,725,000	
Annual Fuel Buffer Cost		937,145,672	
Annual Aircraft Lost Productivity Cost Gorilla	s	3,090,333,333	Drimary innute:
Annual Lower Ficket Revenue with Low A0 Quality	\$	226,300,000	Primary inputs:
Total Single Airline Annual Buffer/Rework Cost	\$	4,840,820,672	 4,000 flights
Annual Recoverable Crew Buffer Cost	\$	91,250,000	,
Annual Recoverable Defect Rework Cost	\$	28,287,500	per day
Annual Recoverable Overnight Rework Cost	\$	42,431,250	 20 buffer min
Annual Recoverable Fuel Buffer Cost	\$	281,143,701	² 20 builet IIIII
Annual Recoverable Aircraft Productivity Revenue	\$	618,066,667	per flight
Annual Additional Ticket Revenue with A0 Quality	\$	226,300,000	permyn
Total Annual Recoverable Buffer/Rework Cost	\$	1,287,479,118	 Recovery of 6
			_
Total Annual Tons of Single Airline CO2 Generated		32,686,567	min per flight
Total Annual Tons of Buffer/Excess CO2 Generated		4,358,209	
Total Annual Tons of Buffer/Excess CO2 Easily Prevented		1,307,463	 \$2.15/gallon
Total Annual Fuel (gallons) Total Annual Buffer/Excess Fuel (gallons) Total Annual Buffer/Excess Fuel Easily Saved (gallons)		3,268,656,716 435,820,896 130,746,269	
Total Buffer/Excess Aircraft Required Total Buffer/Excess Aircraft Easily Recovered		103 21	
Total Number of Buffer Pilots Required Total Number of Buffer Pilots Easily Recovered		1,333 400	

Independent View of Schedule Padding

JFK/EWR to LAX

J	FK		WR	to	SF	O
---	----	--	----	----	----	---

Year	Alaska	American	Delta	JetBlue	Spirit	United	Total
2017	5.4	12.2	5.5	6.6		5.5	7.2
2018	11.3	14.4	10.4	7.7		6.6	10.2
2019	7.6	9.9	9.0	8.2		5.6	8.1
2020	15.9	19.3	14.4	10.3		15.9	14.9
2021	17.5	18.0	13.4	17.3		11.4	15.2
2022	12.3	8.6	8.3	9.8	13.2	12.8	10.1
2023	9.3	11.8	6.8	9.9	6.8	11.3	9.7
Total	9.5	12.7	9.2	9.8	8.7	9.0	10.1

Year	Alaska	American	Delta	JetBlue	United	Total
2017	3.4	2.6	11.3	7.3	4.0	5.5
2018	8.0	6.6	13.7	6.0	5.6	7.8
2019	6.7	6.9	12.2	12.9	4.3	7.9
2020	19.2	17.5	22.2	16.1	15.8	17.7
2021	17.8	14.3	29.5	20.2	12.9	18.5
2022	11.5	7.1	25.2	16.5	14.0	14.7
2023	11.3	12.0	22.6	12.4	14.2	14.6
Total	9.2	8.3	18.0	12.6	8.7	11.1

airinsight.com

United Airlines 1995 Analysis

Sample Value of Productivity Gains

Domestic Aircraft Only (727, 737, 757, DC10-10)

Average Dally Flight Hours (Block)

Average Number of Flights

Average Hours per Flight (Block)

Average Time Savings (all sources)

411 aircraft

10.85 hours/day

4.92 fits/day

2.21 hrs/fit

18.08 mins/fit

18.08 mins/fit x 4.92 fits/day x 1 hour/60 mins = 1.48 hrs/day/airplane

1.48hrs/day x 1fit/1.91hrs x 411 airplanes = 319 flights per day

100 pax/flight x \$160/pax = \$16,000 per flight (does not include cargo)

\$16,000 revenue/fit - \$5,000 direct cost/fit = \$11,000 contribution per flight

\$11,000 contribution/flight x 319 fits/day x 365 days/year =

\$ 1.3 Billion per year additional contribution

3ource: United Airlines

Note: Unaudited Data, for illustration purposes only

GE Aviation Independent Analysis

GreenLandings™ Actual Dubai Results

KEY METRIC	RESULT
A0 Improvement (Passive to Active)	14.82 %
A14 Improvement (Passive to Active)	12.04 %
Dwell Time Reduction	2.98 Minutes
Fuel Reduction	25,055 Kg / Day

GreenLandings™ Actual Atlanta Results

August 2006 through October 2013

GreenLandings™ Delivers the Green for Delta Over \$74,069,046 Saved in Fuel Alone

•	Fuel Saved in Gallons	30,091,899
•	CO2 Reduction in Pounds	634,788,613
•	Flight Time Saved in Minutes	1,662,726
•	Days of Operation	2,432
•	Slots Recovered	34,375

FAA Task J Actual Validated Benefits

Table 2. Monetized Benefits Summary (for first year of operation)

			T	26.3
	US Airways-CLT		Delta Air Lines-MSP	
	Active Phase 1	Active Phase 2	All Observations	Representative Days
Total System Costs	\$1,587,458	\$4,337,458	\$1,553,530	\$1,553,530
System Monetized Benefits	\$1,232,774	\$5,649,473	\$12,328,152	\$5,242,340
System Benefit/Cost Ratio	0.78	1.30	7.94	3.37
Total Participant Costs	\$1,587,458	\$1,587,458*	\$1,553,530	\$1,553,530
Participant Monetized Benefits	\$1,130,337	\$3,127,668	\$3,330,214	\$1,373,975
Participant Benefit Cost Ratio	0.71	1.97	2.16	0.88

^(*)One Airline Attila™ system

Wide Ranging Benefits

GreenLandings™ Benefits

- Improved profits
- Increased on time arrival
- Reduced fuel burn, CO2 and NOX
- Increased crew and system productivity
- Reduced ramp congestion
- Better gate utilization
- Improved product quality
- Increased NPS and less passenger stress
- Reduced ATC complexity and costs

Each benefit pays for the program many times over. All benefits together make this a huge win for your passengers and shareholders.

Sustainability, Quality and Profits

- GreenLandings™ is critical path to Operational Excellence and rapidly benefits the airline, pax, environment, ATC
- GreenLandings[™] focuses on defect prevention versus defect correction
- GreenLandings™ independently validated by FAA, Embry-Riddle, GE Aviation, Georgia Tech and others
- GreenLandings™ implementation at first airport in 9 months and system wide at all an airline's airports within 3 years
- GreenLandings™ require no new avionics, no new airborne/ground equipment and no new ATC procedures
- Immediate Benefits cash-on-cash ROI achieved in months

Additional Information

GreenLandings™ Articles and Videos

- <u>Can Airlines Internally Rapidly Reduce CO2 and Delays?</u> (Leeham News and Analysis, 2023-07-31)
- ATC is Not the Problem (Managing the Skies, Spring 2022)
- Aviation Needs a New Direction Driven by Vision and Leadership (Managing the Skies, Nov/Dec 2019)
- GreenLandings™ Heathrow Interview (video 46:46, 2020-12-30)
- GreenLandings™ Independently Validated Benefit Summary 2022-05
- <u>Air Traffic Control Is Not The Real Cause Of Airline Delays</u> (Forbes.com, 2017-03-23)
- <u>Institutionalizing Airline Operational Dismality</u>, (Managing the Skies, Fall 2021)
- <u>Fastest Airlines in the U.S.</u> (Forbes.com, 2019-06-17)