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Abstract

The status of concepts and techniques for the
design of on-board flightpath managemeidt systems is
revieved. Such systems are designed to increase
flight efficiency and safety by automating the opti-
aization of flight procedures on-board aircraft.
After a brief ceview of the origine and functions of
such systems, tha paper describes two complementary
ssthods for attecking the key design problem,
namaly, the synthasis of efficient trajectories.
One method optimizes en route, the other optimizes
terminal area flight; both methods are rooted in
optimal control theory. Simulation and flight-test
results are reviewed to illustrate the potential of
these systems for fual and cost savings.

Partial List of Symbols

CpoC, = unit cost of fuel and time, $/1b, $/sec,
raspectively
D = drag force, 1b

df.de. = desivred range, cruise range, clisb range,
descent rauge, raspectively, ft or n. mi.

dup'ddn

z'!:l.' = energy, initial energy, final energy, and
!!.Ec cruise energy, respactively, ft

Scopt = energy at which cruise cost is a minimum
8 = acceleration of gravity, ft/sec’

H = Hamiltonian, aluo ground heading, depend-

ing on context

H, ,H = initial and final ground hesding,
respectively

h.hi.hf = altitude, initial altitude, final alti-
tude, respectively, ft

J = cost function, $

Kup'xdn = climb and descent terms in Hamiltonian

L = 1ift force, 1b

P = differential cost, $ per sec

ch = thrust specific fuel consumption, per 1b
T = thrust force, 1b

t.t, = time, total flight time, respectively, sec
Loty ® time at end of climb and beginning of

descent, respectively
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v

*“c' = girspesd, cruise airspaed, climb sirspeed,
V“ 'vdn descent airspeed, resvectively. ft sec

P or knots
V‘ = ground speed, ft/sec
A\ = wind speed, ft/sec

LB » aircraft weight, lb, and cotal fuel con-
sumed, 1%, respectively,

up’ = distance, climb distance, descent dis-
tance variables, respectively

1.!, = initial and final x coordinates in
Cartesian sys(en

’11.1' e initia) and final y coordinates in
Cartesian systen

a = angln of attack: deg

Y = flightpath angle with tvespect to air
sass, deg or rad

A'*opt = cruise cost, minimm 5f cruist cost with
respect tO energy, respsctively

v = thrust vector angle, measuved tealtive to
fuselage refarunce Siraction

ﬂ,lu »

" P o throttle control var ibles

dn -

¢ = bank angle, deg

%W!.Wx = costate variables

Introduction

Theodore von Kérmén is renowned for his
research and lesdership in halping to establish the
scientific foundation of aeronsutical engineering.
As a researcher at NASA I have admired his brilliant
contributions on many occasions. Therefore, I an
deeply honored and privileged to be able to pay
homage to this great scientist by delivering the
10th von Kférmén Memorial Lecture.

During his long and brilliant scientific career
von Kfrmin not only contributed eminently to the
various disciplines of aeronautical engineering; he
also played a major role in founding saveral of
them. Thus, [ would like to belisve that were he
here today he would find something of intarest in
the relatively new topic of wy lecture, which com=
bines slements of performance analysis, guidance
and control theory, and system science.

Previous voa Xfrmfn lectures often presented a
broad survey of the lecture topic. Howsver, my
topic is of too recent origin to make this approach
worthwhile. Instead, I believe that the reader is
served best by focusing on a fev critical results
that are representative of the current state of



knowledge in the young and evolving field of auto-
matic flightpath management. Furtherwore, [ shall
emphasize reasearch conducted primarily at Ames
Research Center during the last saveral years.

The automation of on~board flightpath manage-
ment mark: the beginning of a new phase in the evo-
lution of aucomatic flight control. For the first
time, on-board computer systems will augment or
possibly even replace the pilot in planning and
executing complex flightpaths. This degree of
on-board automation exceeds that of existing
autopilot/navigation systems, which provide auto-
matic guidance only along pilot-specified flight-
pachs, The higher level of automation will benefit
both the aircraft operator as w:)ll as the air
traffic system through increasec safecty and fuel
afficiency, and reduced pilot workload. The van-
guard of such on-board systems, also referred to as
flight and performance managemant computer systems
(FPMC's), will soon enter commercial service in
several types of jet transport aircraft.

Automated flightpath management is here broadly
defined as computer logic for generating a safe,
comfortable, and economical trajectory, on-board in
real time. This paper presents flightpath manage-
ment techniques and algorithms developed primarily
for transport aircraft., Moreover, the paper empha-
sizes techniques that have been evaluated in piloted
simulacion and flight tests and are being imple-
mented in commarcial systems.

Because interest in automated flightpath wman-
agement has been motivated primarily by increasing
fuel costs, tha focus of research has been on find-
ing computer-implemented solutions to the ninimum-
fuel and cost-trajectory problems. Therefore, the
main purpose of this paper is to describe currently
usad algorittms for on-board calculation of fuel and
cost efficient trajectories. Also, the interface of
ttn algorithm with piloc displays and other guidance
sy tems will be reviewed, with reference to an
implementation recently evaluated in flight tests at
Ames Research Center. Finally, results from simula-
tion and flight tests will {lluscrate the efficacy
of these systems to optimize typical airline flight
missions.

The paper begins with an overview of the func-
tions and general structure of flightpath management
systems. To sioplify on-board implementatiocn, the
analysis is divided into two complementary problems:
en route and terminal area flight. Each of the two
problems is examined in separate sections, which are
complete in themselves in that they include the
derivation of the on-board algorithm and simulation
or flight-test results. The sactions are organized
to satisfy two classes of readers: those interested
{in the analysis and on-board implementation who will
find analytical details sufficient to translate the
algorithms into computer code; and those seeking a
quick overview, who can skip the analysis and con-
centrate on the introductory and results subsections.

Flightpath Management Functions and Problems

A conventional autopilot is designed to track
various types of flightpaths, the simplest of which
are holding a specified altitude, speed, and head-
ing. More complex tasks performed include tracking
of thrae- or four-dimensional curved trajectories
(the fourth dimension is time). The simplified block

diagram of a flightpath tracking autopilot is
embedded in Fig. 1. lts key ¢lesents are a cospen-
sator module, a sensor/estimator/navigacion system
module, and a sumaing junction. Errors between
commanded and aircraft states are continuously
nulled by the action of the feedback loop. Hereto=-
fore, command inputs to the autopilot have been
generated by the pilot, but current developmencs
are changing this process.

REAL TIME INPUTS:
® PERFORMANCE CRITERION
o WINDS
© COORDINATES OF NEARBY A/C e o oo s o i s i e g
® LANDING ORDER AND TIME AUTOPILOT
FLIGHTPATH REAL TIME
MANAGEMENT (wed{ COMMAND NOARM*# A/C
COMPUTER GENERATOR
| P
l -~

) ESTIMATED

INPUT STATES
DATA BASE: ‘ "m“b !
o A/CPERFORMANCE Frbbmeptcid
® ROUTE STRUCTURE SYSTEM
® CONSTRAINTS, FLIGHT RULES e i L.
® TERRAIN/AIRSPACE MODEL o STATES

Fig. | Structure of flightpath managemant systen.
Automation of flightpath management is the
process of generating intelligent command inputs to

the autopilot by an on=board computer, as illus-
trated in Fig. l. The data base for such a system
is extensive. It includes a detailed model, often
storetd in multidimensional tables, of aerodynamic
and propulsion system performance. Other elements
contained in it are airline routes, terrain and
airspace models for terminal areas, the aircraft
operational envelope, and flight rules. In summary,
the computer must have available the same kind of
information required by a pilot for safe and effi-
clent aircraft operation. The items listed under
real tims {nputs in Fig. | are so defined because
they are frequently updated during flight either by
the piloc, the navigation system, or by a data link
to & ground facility, such as an air traffic control
center. Perhdps it is surprising that the perfor-
mance objective is included as a resl-time input;
howaver, many conditions can arise that will require
it to be changed during flight.

The data basa and the real time inputs are
operated upon by the algorithms in the flighcpath
management computer to generate efficient and
conflict-free trajectories. This process is analo-
gous to the work of the flight crew, in that it
involves planning, monitoring, and revising the
trajectory throughout the flight. Traiectories are
first synthesized (planned) in "fast time"
that is, in a time interval that is a small fraction
of the actual flight time. In this crucial scep,
the algorithm computes the entire future flight
history frou the current position to the landing
point. Then the computed trajectory is stored and
finally tranaformed into real time command inputs
for the autopilot. During flight the system moni-
tors the trajectory for incipient conflicts with



intruding aircraft and for excessive tracking errours
caused by ummodeled winds and other disturbances.
It also monitors pilot inputs, such as changes in
the performance criterion or destination point.
These and other conditions can trigger a revision
or complate recalculation of the trajectory by the
fast~-time algorithm. Lest anyone tries to acquire
a system vith these capabilities, I hasten to add
that some of the "smart" functions enviaioned here
are not yat available in the current genaration
flightpath management computers. However, research
is rapidly moving the state of the art toward their
realization.

Of the functions outlined above, on-board
optimization of trajectories has received the most
attencion, since it 1lies at the heart of the flight-
path management problem. In airline operations it
is generally agreed that the most useful performance
criterion is the total cost, J, of a aission, which
is defined as the sum of fuel cost and time cost,

J w CegWg + Cotg, with flight time tg¢ unspecified,
Minimum fuel and minimus time criteria are special
cases obtained by setting C, or C¢ to zero,
respectively. In order to seet an ai:'line flight
schedule or an assigned landing time slot, minimiz-
ing J with specified arrival time is also of
interest.

It is convenient to separate trajectory prob-
lems into two clasces; namely, en route problems
with flightpaths longer than approximately 50 n. mui.,
and terminal area problems with paths shorter than
S0 n. mi. In en route flight, the paths are pre-
dominantly long sections of straight lines with a
negligible percentage of the flight time spent in
turns. Thus, turning dynamics can be neglected and
only vertical plane dynamics need to be modeled in
optimizing the en route case. This problem is
studied in the next section. In terminal-area
flight, vertical and turning maneuvers tend to occur
simultaneously and in comparable time intervals.
Thus the dynamics of both types of motion must be
modeled in trajectory optimization. This more dif-
ficult problea is studies last. Although solution
to both problems have been carried into simulation
and £light tests, the merging of the solutions
required in a full-mission flightpath management
system remains to be accomplished.

En Route Flightpath Optimizacion

The point mass equation of motion for flight in
thie¢ vertical plane can be written as

dv/dt = g(T = D)/W - g sin v 1)
dh/dt = V sin ¥y )
dx/dt = V cos v (3)

In normal flight maneuvers of transport aircraft the
f1ightpath angle rates are such that yV/g << 1 and
[¥] s 10°. These conditions allow us to take flight-
pacth angle as a control variable with 1ift calcu-
lated from the constraint L = W cos y and to
approximate the cos y factors in the above equa-
tions by unity., The effect of a horizontal wind,
when its magnitude is a small fraction of the air-
speed (one third or less), can be included by modi-
fying Eq. (3) as follows:

dx/dt = V + Vv E3 V. (&)

where V,, is the component of horizontal wind
valocity along the ground track direction. The
quantity V, can be a function of altitude, but
dynsaic effects of vind shear as well as the verti-
cal component of the wind do not play a significant
role here and are neglected. In airplanes, unlike
in most types of aisasiles, mass flow cwing to fuel
burn is relatively slow and does not need to be
modeled by a scate equation. Instead, the alowly
changin;; mass of the sircraft will be treated as a
time~varying perameter.

In this paper thu equations of motion are
further siwplified by combining altitude and air-
speed into a singlc state variable, specific energy:

E=h+ (1/2g)V? ¢))

Differentiating Eq. (S) with respect to time and
substituting Eqs. (1) and (2) into Eq. (5) yields

dE/dt = (T - D)V = & (6)
The control variables in Eq. (6) are airspeed V
and thrust T, or its related quantity, throttle
satting w. This is the so-called energy-state
model, which his been widely used in trajectory
optimization problems.’” 1Its utility depends
antirely on the nature of the application. For the
qussi-steady trajectories commonly found in climb,
cruise, and descent of transport aircraft, the
energy~-state model provides especially simple
on-board algorithms, as we shall see.

Optimal Control Formulation

In a previocus section, the most important per-
formance criteria that arise on-board flightpath
nanagement vere enumerated. These criteria will be
shown here to be essantially equivalent when formu-
lated as problems in optimal control.

Consider first the minimum-cost criterion with
a specified range to fly and no explicit conatraint
on flight time. This criterion can he written as
an integral cost functiom:

tf
J-f (O]
), Ef

With Eqs. (4) and (6) as the scate equations, the
Hamiltonian of optimal control® is

te
+C,)de = f P dt 4]

o

HeCW

v
Ve + ct + w!(T - D) gt wx(v + vv) (8)

vhere yg and ¢, are the costates. On an extremum
trajectory the ﬁnniltoninn achieves its sinioum
with respect to the controls V and T, and the
costates obey the linear differential equations

ACM, +C)
Vg = - E

(T - D)V/W]
E

Ve (9)

v, =0
or (10)
Vv, = constant
x
Since specific energy and range at the final time
are specified, the values of the costates at ¢t
are free constants, which are usad to determine the

desired final states E¢ and d¢. The proper choice



of these conuwtants comprises the well~known two-
peint houndary value problem of optimal control.
The snlution of this problem will be addrossed in
the next section, Becuuse the final time is uncon=
strained, the Hamiltonian alao obeys the conditier,

HeoO (1)
for all ¢, Note that ¢p 1s a function of time
whereas ¥y 418 & conscant independent of time,

However, it 1s not necessary to integrate Eq. (9)
along the trajectory to obtain yg(E). Equattion (il)
provides & first integral and when combined with

Eq. (8) yields yp algebraically.

Consider next the same performance criterion
as Eq. (7) but with the tinal time ¢ty aspecified.
Thin changes only Eq. (11), which bucomes

Hoed, (12)

where Cp 1is a constant for each trajectory. But
tor each constant ﬁt obtained for a particular
fixed-time optimum trajectory, one can define

Cf = Cp - C¢ and consider the same trajectory alwo
to be & solution of the free-time problem, with Cg
replaced by C{. Obviously, tha cime-comst factor
caniot be specified indepundently in the fixed-time
problem. Thus, the fixed-time problem with specified
range makes physical sense only for the sinimum fuel
performance index, C¢ = 0. Moreover, every fixed-
time, minimum fuel problem can be formulated as a
free~time problem with the time-cost factor Cg
chosen 30 as to achiave the desired final time.

Finally, consider the sinimum fuel perforwance
index, C¢ = 0, with fixed final time and no con-
straint on range. This problem occurs in generacing
minimum fuel deiay maneuvers. Here the transversal-
ity conditions of optimal control require ¢y » 0
(Ref. 4) and a particular solution will generally
vield a nonzere H, say C¢, and some range 3;.
However, this solution will be identical to the
free-time, fixed-range problem in which Cp = -C¢
and d¢ = dg¢.

The essantial equivalence of the various prob-
lems {mplies we can concentrate, without loss of
generality, on algorithms chat solve the free-final-
time prablem,

Solution Based on o Simplified Approach

We now introduce the approach of Ref, 3 by
assuming that the trajectories are composed of three
segments; namely, a climb, a cruise at constant
specific energy;, and a descent, as {llustrated in
Fig. 2. The cosc function (7) can then be written
as the sum of the costs of the three segments.

t(‘. tf
J - f P dt + (dE—dup-ddn).\ + f P dt (13)
Q td

L PR—

- )

climb cost cruise cost descent cost

where )\ designates the cost of cruising at a given
specific energy E,. Next, we trausform the inte-
gral cost terms in Eq. (13) by changing the indepen-
dent variable from time to wpecific energy, using
the transformation dt = dE/g:

INERQY

L

b CAUISE, ¢, e

;-‘.

cline, o, OESCENT
L

RANGE, «

Fig. 2 Assumed structure of optimum trajectories.

-d

E
Je J; C(P/E)L, JHE + (dg - dyp = gn’*

i

B, .
+ J;[ (l'/lb.[li:<°)dt (14)

vhere Eg and E¢ are the given inttial :limb and
final descent energies, vespectively, Tha crans-
formation uses the assumption that the enexgy
changes monotonically in the climb and dezzent,
This places strict inequality constraints on E, as
showm {n Eq. (14). Alse in Eq. (14), the integra-
tion limits have been reversed in the descent cost
term. In this formulation the cost function is of
mixed form, containing two integral cost terms and
a terminal cost term contributed by the cruise
segment .

With the change in independent variable from
time to encrgy, the state equation for spacific
energy is eliminated, leaving Eq. (4) as the only
state esquation, Furthermore, we note that the
performance function (Eq. (14)) depends on the dis-
tance state x only through the sum of the final
values of climb and descent distances d,, + dy,.
Therefore, the state aquation tor the distance {s
rewritten in terms of this sum:

d(xup + xdn)/dE - (Vup + vvup)/zlﬁko

+ (vd“ + v'dn)lll: Ve<o

(15)

Here, the transformation dt = d!}ﬁ was used again.
Also, Eq. (15) provides for independence t{n the
specificacion of the climb and descent wind veloci-
ties Viyup and Vygn. Generally, different vind
conditions will prevail in physically differenc
locations of climb and descent. The wind velocities
can also be altitude dependent. The effect of
alt{itude~dependent winds on the optimum trajectories
is discussed in Ref. 5.

Necessary conditions for the minimization of
Eq. (14), subject to the state eaquation (Eq. (15))
yield the following expressions for the Hamiltonian
and costate equations, respectively:



B 1 )
vup’vdn E>o E<o
"up'“dn
. Vo * Vup N Van * Vudn (16)
IR L1
E>o | 2T)
dy/dE = -(au/a(xup + x40 =0 (n

The Hamiltonian is minimized with respect to
two pairs of contrcl variables, one pair applicable
to climb (Vyp and m,.) and the other to descent
(Vgn and my,). Note that throttle-setting =
rather than thrust is used as a control variable,

In general, thrust and fuel flow are nonlinear
functions of 7 as well as of altitude, Mach num-
ber, and temperature. Since each term under the
minimization operator in Eq. (16) contains only one
of the two pairs of control variables, the ainimiza-
tion simplifies into two independent minimizations,
one involving climb controls, the other, descent
concrols. Also, since the right-hand side of the
costate equation (Eq. (17)) is zero, ¢ is constant.

Next we examine the transversality conditions
applicable to this formulation. The basic con-=
straint in this problem is that the range of the
trajectory be dg¢. However, d¢ 1s a parameter in
the transformed cost function, Eq. (14), and not a
state viriable., The final value of the state
variable dyp + d4n 1is, in this formulation, sub-
ject only to the inequality constraint dyp+ddp<dg.
This constraint is, of course, necessary for a
physically meaningful result. The inequality con-
straint can be handled by solving two optimization
problems, one completely free (dyp + dg, < df), the
other constraified (dyp + ddn = dfg. and then choos-
ing the trajectory with the lowest cost. Physically,
the comparison is between a trajectory with a cruise
segment, and one without a cruise segment. Consid-
ering first the free-terminal-state case
dyp + ddn < d¢, we obtain the following relation for
the final value of the costate y:

A, - Xyp~ xdn)A[

- =)
a(xuP + xdn)

v(E.) =

E-Ec’xup'dup'xdn'ddn
(18)

This is the transverz_lity condition for the free-
finzl-state problem with terminal cost.' It shows
that the constant costate value is the negative of
the cruise cost.

Next, consider the case of trajectories with
no cruise segment. Then, the middle term of
Eq. (14) drops out and the performance function
contains only the integral cost terms. This i{s the
case of the specified final state df = dy, + dyqn;
the corresponding transversality condition yields
W(Ec) = constant. In practice it is not necessary
to compute the constrained terminal-state trajectory
{f a valid free-terminal-state trajactory exists,
that is, one for which dg > dyp + dgy. since the
addition of a terminal constraint can only increase
the cost of the trajectory. Therefore, this case is
not considered further in this paper.

In both cases ihe choice of a costate deter-
aines a particular range. Since the functional
relationship betwesn thesa variables cannot be
determined in closed form, it is necessary to iter-
ate on the costate value in order to achieve a
specified range dg¢,

The last necessary corndition applicable to
this formulation is obtained by making use of the
fact that the final value of the time-like indepen-
dent variable E {s free. Its final value is the
upper limit of integration E. in Eq. (l4). Appli-
carion of thu free-final-time transversality condi-
tion in Ref. 4 provides the following condition:

- dgIMB/3E]) g = O
19

(u + (aldg - 4,

which, when evaluated becomes

B+ (de(dA/dB)) ) g = O (20)

wvhere d, is the cruise distance.

Fquation (20), together with knowledge of the
salient characteristics of the cruise cost ' and
the Hamiltonian H, can be used to determine the
structural dependence of the optimua trajectories
on the range.

Cruise cost at & cruise energy E, and cruise
speed V. 1is computed from the relation

A(EC'VC) b P(ToBc'vc)/(vc + V'> N

T =D

constraints:
L =W
vhere the denominator is the ground speed in the
flightpath direction. Examination of the term
containing A in the relation for the performance
function (14) shows chat the value for A should
be as small as possible at each cruise energy in
order to minimize the total cost J. Therefore, the
cruise-speed-dependence of )\ 1is eliminated by
minimizing the right side of Eq. (21) with respect
to Va:

A(E,) = min P(T.sc.vc>/(vc + vw)
Vc

(22)

In this paper, )\ and V., are always, assumed to
be the optimum cruise cost and cruise speed, respec-
tively, at a particular cruise energy E..

Except in high wind shear, the cruise cost as
a function of cruise energy exhibits the parabolic-
like shape shown in Fig. 3. For subsonic tranaport
aircraft, the minimum of the cruise cost with
respect to energy occurs close to the maximum energy
boundary. This characteristic of the cruise cost
pravails for essentially all values of the perfor-
mance function parameters C¢ and Cy. The quanti-
ties defining the optimum cruise conditions are
Ecopt and Agge. In Eq. (20), the derivative of the
cruise-cost function multiplies the cruise distance.
Except under extreme wind-shear conditions, the
derivative is monotonic and crosses the zero axis at
Ec = Ecope- By observing that clizb anc descent
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Fig. 3 Cruise cost function.

controls do not occur simultineously in the terms of
Eq. (16), and by substituting Eq. (!8) in Eq. (16),
we can separate H into climb and descent compo-
nents as follows:

H(!.x(Bc)] - Iup + Idn (23)
whare
P -
P - AV )
up * nin .“p e,
upl. z)é>° -
up
- (24)
P - x(v +Vv. .
Idn = min LLL
vdnL IE“!-:O
LJ
dn

Numerical studies of Eq. (23) for several
models of subsonic :urbofln aircraft show
H{Ec+A(Ec)] 2 0, for Eg £ Eggpe: Consider first
the case in which R[!c )(Bc)] > 0; then Eq. (20)
can be solved for the cruise distance de:

d_ = -HIE_.A(E) ]/(dh/d!)a.gc @29

Since dA\/dE < 0 for E, < Egoppr and dA/dE
approaches zero as E. approaches E t» the
cruise distance must increase without lfnit as [E,
approaches E., Although numerical calculations
show that :hc vuluc of H tends to decrease as E¢
increases, the rate of decrease in d)\/dE 1is more
rapid and dominates the behavior of d,. Figure &
shows the family of trajectories, obtained if H > 0
for all values of E.. In this case, intersstingly,
nonzero cruise segments occur at short ranges and at
energies below the optimum cruise energy Eqgpe.

Consider next the case in which
H{E.,A(Ec)) @ 0. Then, dc = 0; that is, no crvive
segment. {s present for d\/dE < 0. Howevar,
Eq. (20) allows d, to be nonzero if di/dE = O.
This implies that for H = 0, cruise flight is opti-
mum only at the optimum cruise energy E.
Figure 5 shows the family of trnj.c:orioo gor this
case.

- —
tnenay @ \
el -
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ENERQY
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Fig. 5 Energy ve range, H = 0 at E,.

Thrust Optimization for Minimum Fuel Tr tories
EBvaluation of the Hamiitonian would be simpli~-
fied if one of the two pairs of control variables,
airspeed or throttle, could be eliminated a priori
from the minimization. Since the pair of throttle
sattings wyp and 4y is thought to be near its
limit, we shall look for conditions where extreme
settings of the throttle are optimum. We examine
here only the minimum fuel case C¢ = 1 and
Ce = 0, with winds set to zero in order to simplify
the derivation. However, the reasults can de
extended to the case in which C¢ ¥ 0.

For minioum fuel performance, the twsc terms in
the Hamiltonian Eq. (24) become

Iup - nis Kup v Lgn , -13 Kin (26a)
up' up dn’"dn
vhere
.
_ Ht- AV“ )
up ~ | (T - D)V“ 1] *
. P Jr(s )50
(26b)
~
. - Ve = Ay
dn ~ |T - Dlvdn7i
- T('dn)<°

An sccurate model for thrust and fuel flow
generally fncludes the functional dependencies,
T(v,V,h) and We(w,V,h). In sddition, these func-
tions sust be corracted for nonstandard temperatures
and hleed losses.



In earlier work on aircraft trajectory optimi-
zation,® a simpler model for fuel flow and thrust
vas often used:

Wy @ TSpaVeh) 5 T (Vi) $ T s T (V,h) (27)

The critical assusption in Eq. (27) is indepen-
dence of the specific fuel consumption Sgc from
thrust, The virtue of this model lies in the
insight Lt yields into the minimum fuel problem. 1f
Eq. (27) is substituted into Eq. (26h), one obtains

. . sv,cw [kug -r(x/smwu]
up ~-D
ue up T,p°0
(28)
. . Spc¥ [‘rdn ;r(x/spcwdn]
dn Vo Tin - D} T <

dn 0

For any fixed values of Vyp or Vdn, the
operand functions Kyp and Kgp with respect to
thrust are hyperbolas with poles at T,, » D and
Tdn ® D, respectively. The numerator zero with
respect to thrust must be to the left of the pole on
the thrust axis for specific energies less than
cruise energy. This implies that max/mum thrust
miniaizes K, and idle thrust minimizes Ky, for
any E < E., and proves that the limiting values of
thrust are optimun for this propulsion modal
throughout the climb and descent trajectories. This
result also implies that the departure from the
limicing thrust values found for the more genaral
propulsion model is directly attribucable to the
nonlinear dependence of fuel flow on thrust. Con-
versely, the need for throttle-setting optimization
can be determined a priori from the fuel flow versus
thrust dependence for a particular engine. Such
data are found in the engine manufacturer's perfor-
mance handbook.

Effect of Model Characteristics

We have seen in a preceding section chat the
value of the Hamiltonian computed at cruise energy
E. determines the structure of the trajectories
near cruise. It is possible to relate the existence
of cruise below E.,,. to specific engine and aero-
dynsmic model plrnlogcra. This is done by substi-
tuting truncated Taylor series expansions of fuel
flow and drag as functions of airspeed and thrust
into thea expression for the Hamiltoniaw. The loca-
tion of the minimum with respect to the controls as
well as the value of H can then be determined as
functions of the Taylor series coefficients at
E ®= E;. These and other calculations are carried
out in Ref. 3. Here the results ave summerized for
two types of engine characteristics.

Case A: S Independent of Thrust. The
structure of the trajectories for the case in which
specific fuel consumption is independent of thrust
is given by the family of trajectories in Fig. 5.
In these trajectories no cruise segment occurs
unless the range exceeds a certain minimum range,
and then cruise takes place at the optimum cruise
energy Ecgpe. Furthermore, it can be shown that
the optisum climb and descent speeds are equal to
the cruise speed at the cruise cnor;y.’ Thus there
is continuity of the optimum speeds at entry and
exit of the cruise segment, if it {s present, or at

the transition from climb to descent, i{f {t is not
present. The continuity of the speeds simplifies

the design of the interface betwaen this algoritha
and the guidance system for flying the trajectory.

Previously it wvas stiown that for the thrust-
independent Spc case, the optimum climb thrusc is
the maximum thrust, and the optimum descent thrust
is the minimum or idle thrust, These and the above
simplifying characteriscics emphasize the importance
of the assumption underlying Case A, It suggests
that 3ven if the assumption is not completelv satis-
fied, one should evaluate its effect on the dpei~
mality of the trajectories.

Case B: Src Thrust Dependent. Figure 6 plots
Spc and fuel flow as a function of thrust for a

typical in-service turbofan.® Over the complete
thrust range, Spc 1is seen to be strongly thrust
dependent, approaching infinicy at low thrust
values. However, at typical c.imb or cruise
thruscs, corresponding to the upper half of the
thrust range, the variation in Spc is only about
5%. The dashed line through the origin gives the
best constant Spc approxiwation to the fuel-flow
function. Comparison indicates an excellent match
at high thrust, but significant errors at low
thrust. For some applications, the constant Sgc
assumption of Case A may still be adequate, if
errors in fuel flow at low thrust are considered
unimportnat.
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Fig. 6 Spc and fuel flow vs thrust: typical
turbofan,

By using :n engine model similar to that
defined in Fig. 6, it was shown in Ref. 3 that if
thrust is a free but bounded control variable, the
optimum cliasb and descent thrusts and airspeeds
converge toward the optimuam cruise thrust and air-
speed as the climb and descent energies approach
the cruise energy. This result applies to all
cruise energies, including those less than the opti-
mua cruise energy E.ope. The structure of the
trajectories is similar to that shown in Fig. 5,
except that at the maximum (or cruise) energy the

s
\
i
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trajectories will have a rounded rather than a
peaked appearance (because of the continuity of
thrust at maximum wnergy). Minimizacion of H by
computar has showm that the thrust i{s maxieum ov
idle for about the lower three fourths of the energy
range between initial (or final) and maximum energy
and tlisn converges to the cruise value as cruise
enargy is approached. This corroborates the theory
that the optimum cruise energy is approached asymp-
totically as the specified range incresses without
bound.,

A different result is obtained if this fuel-
flow model is used in conjunccion with the constraint
that thrust be set to its maximum value in climb and
to its ainimum value in descenc. Such a constraint
might be invoked in order to simplify the minimiza-
tion of the Hamiltonian, and it gives rise to unone
zero cruise sagments bulow the optimum cruise energy.
The structure of the trajectories in this case is
illustrated in Fig. 4. Again, optimum cruise eonergy
is approached asymncotically for large ranges.

Computer Algorithm, The climb and descent pro-
filas are generated by integrating the state equa~
tion (15) from the inicial energy E{ to the
maximum or cruise energy E.. For this purpose,

Eq. (15) is separated into L{ts cliwb and descent
components as follows:

dxu

® v

up °® Yyp + unp)/E]é>o‘ x“p(El) =0

(29)

dx
dn : .
dE ° (vdn €08 Yin + vudn’”E]] E<u’ xdn(sf)'o

with E = (T = D)V/W. Flightpath angles are not
defined within the reduced dynamics of the energy
stute model and were previously assumed to be amall,
Nevertheless, during the integration of the trajec-
tory, the flightpath angles for climb and descent,
Yup and vy, can be computed by using values of
altitude and distance from two successive energy
levels. The use nf these computed flightpath angles
in Eq. (29) increase¢s somawhat the accuracy of the
c¢limb and descent distance integrations. In addi-
tion, equations for time and fuel are also inte-
grated during climb and descent.

At each energy level tha optimum airspeeds and
thrust settings are obtained as the values that
minimize the two components of the Hamiltonian in
Eq. (24). The minimization of the Hamiltonian_is
carried out by the Fibonaceci search technique,
Fibonacci search is basically s one-variable aini-
mization procedure. It is adapted here to two
variables by applying the technique to one variable
at a time, while holding the other variable fixed.
Convergence to the minimum is achieved by cycling
between the two variables several times. Prior to a
search over a given control variable, the limits of
the regions for K, and Ky,, are computed in order
to keep the search fntervnl as small as posaible.

As previously explained, the choice of X in
the Hamiltonian determines the range of the trajec~
tory, but the axact functional dependance between 2
and range cannot be determined explicitly for the
various weights, wind profiles, and other parameter
values encountered in real-time operation. Itera-
tion on \ wmust thereforea be used to achieve a
specified range. Since each i{teration step requires
integrating Eqs. (29), it is important to minimice

the number of iterations. This is accomplished by

updating the eucimate of A at sach {teration

step, using an approximation of the functional rela~

tionship betveen ) and dg, as illuscrated in

Fig. 7 for a typical transport aircrafc, For any

range dy ¢ dg,y, the estimate is computed from
A= A/d' +3 (30)

where the constants A and B are updated after each

trajectory integration, Further details of this

procedure atre given in Ref, 7,
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Fig. 7 Typical cruise cost vs range relationship
fot example aircraft.

If in addition to range the time of flight {s
also specified, a second iteration loop involving
the time-cost factor C. must be implemented. This
loop uses a procedure analogous to the one in the
range iteration.

Another element of the algorithm compensates
for the veight change caused by fuel dburn. The
effect of the change in weight on the optimum tra-
jectory is estimated by two methods. The first
merely updates the weight in che calculation of E
during climb and descent. This ensures that the
trajectories generated by integrating Eq. (29) are
based on an accurate model of the aircraft.

The second meathod attempts to correct the
optimizacion of the trajectories by escimating the
change in the cruise coat ). This is done by
using the veight of the aircraft at the end of
climb, that is, at energy E. to compute the value
of ). It is important to use the weight at E.
rather than the weight at Ey to compute 2
because the sensitivity of the optimum controls to
changes {n \ increascs as the aircraft energy
approaches The fuel consumption for the entire
climb trajectory, F,,, is estimated at the start of
climb from the empirical ralation

Ec.

rup =K (E - ai)u‘/w“‘ (31)
vhere K; is an atircraft-dependent constant, and
Wegf 18 2 typical initial climb weight. This rela-
tion estimates the climb fuel weight to about 10%
accuracy, vhich is adequate for this purpose. Simi-
larly, the veight at the end of cruiss, i{f a cruise
segmant is present, is used to compute ) for the
descent optimization. The cruise fuel consumpt’on



Fe 1is determined from the relation

F, Hdc/\l“ (32)
vhere W is the average fuel-flow rate and Vg the

avergge ground speed during cruise, The calculacion
of W and Vg 4is described in Ref, 7,

The computer implementation includes both the
tree~ and constrained-thrust cases. For the
constrained-thrust case, the cruise distance is
computed from Eq. (25). However, bacause d)\/dE
approaches zero as E. approaches E.one thury is
a practical limit to the use of Eq. (53?. dater-
mined by the nuserical accuracy of computing d)/dE
for E. in the neighborhood of Egopee A practical
1imit for E. 4is cthat value for which
\ = 1.01\opc+ The total range of the trajectory
obtained for this valuc of \ {s referrad to am
dmgx+ All trajectories ruquiring longer ranges
than dpmyy are assumed to cruise at E.ope 4nd to
contain cruise segments of length d;edg=dyp=dyn,
vhere dyp and dg, are computed for ) = l.OgAup:.
In the fres-thrust case, numerical difficulties can
arise in minimizing Eq. (24) as E. approaches
Ecopt. The value of 1.01Agpe  has also been found
to serve as a practical criterion for compucing the
longest range without a cruise seguent at Eqqp,.

A compute! pvdpgram of the algorithm has been
implemented in FCKTRAN IV and is described in detail
in Ref. 7. Thers are approximately 2,400 FORTRAN
{instructions in the program.

Optizvm Time-Delay Trajectories

Many air travelers have experienced in=-flight
delays at their destinacion airports. Such occur-
rences lead to the important flightpath management
problem of minimizing the fuel loss for a specified
delay in the landing time., Assuming {t i3 not {ea-
sible to absorb the delay on the ground or at an
slternative airport, we can divide delay maneuvers
into two types: slow-down and path-screcching (the
latter may also include speed changes).

The problem of determining the c¢pcimiy delay
trajectories can be solved by examining the loci for
fuel consumption versus time for the minimum fuel
specified-range (SR) and minimum fuel specified-time
(ST) problems plocted in Fig, 8. First observe that
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INCREASING X
RANGES  —d4 ST LOCUS
§ x,\ b U, ‘3
- ! dg
] 4
- 4
Smcidy) LOCU!
g e
PATH STRETCHING
REQUIRED FOR —)—e
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Fig., 8 Fuel-time loci of optimum trijectories.

for a fixed final time c¢g¢, the fual consumption
as vead from the ST locus must he )lese than the
fuel consusmption as read from che SR locus. More-
over, at tge the corresponding vange d; on the
SR locus must be greater than the range d, on the
ST locus, These characteristics follow [rom the
optimality of the loci, As the time-cost factor
C¢ 1is changed over a range of positive «nd negacive
values with range held fixed at d,, the fuel~time
locus MC(d;) of all minimus cost, free-time Lra-
jectories is gunerited, The minimum of chis locus
with respect to fuel consumption is attained at

Cc = 0 and contributes one point on the SR locus,
Points to the left of the minimum correspond to

C¢ > 0 and pointa to the right to Cp < 0, From
argusents in a pruceding section (Optimal Control
Formulation), the MC(d,) locus must have one point
in common with the ST locus; namely, at the time
tad in Fig 8, Furthermore, the two loci must be
tangent at that time and can have no other points
in common,

Assume that the specified final time t, is
such that taf $ &, < tpg. The difference
ty = tue is the delay with respect co the ainimum
fuel final time. Also assume that d; 1is the
shortest distance from the current sircraft position
to cthe destination point, We now s4s. whether a
strecched pach, say d; > d; can give lower fuel
consumption than d,, But it follows from the rala-
tionship {llustrated in Fig. 8 that MC(d,) MC(d,)
for d;, > d; and t; £ toy, Thus path stretching
is not optimum for t; £ tpy.

Next assume that the specified final time ¢,
{s greater than ty, . There the fuel consumption
read from the ST locus at t; will be equal to or
less than thut read from cthe MC locus for all
d 2 dy. It will be exactly equal for the value of
d = d,, namely, where the two loci are tangent to
each other, Thus, in order to minimize fue! con-
sumption for ¢, > tpy, the minimum distance path
of length d, should be stretched by the differ-
ence d, - d,. The detailed shape of the path-
stretch maneuver is not critical. Howvever, tums
should be done at small bank angles so as to mini-
mize bank-angle-induced drag, which was neglected
{n this derivation.

The final rcep in roiving <he optiosus delay
problem is to show how tg4, the maximum time to
fly a specified range d,, can be computed from the
algorithm developed in .he preceding section. The
Hamiltonian, the state equation, the cruise cost ¢
and cthe transversality condition for the fixed-time
problem with specific energy as independent
variable are

Cele - S(B)  Cq¥e - c(BS)

H = min - - (33)

Vap* Mup Elgso 'E|E<o

vdn’“dn

d(:up +t, )/dE = 1/!:“:”o + 1/]Elg

cup(si) =0, tdn(Ef) =0
Cruise cost:
C(E) = :}n cf”f(vc'ac) 3 cfuf“n(zc)
< (34)

Constraint; T =D, L =W



(38)

[“ ' (t“‘" g%)]s-sc "

vhere ¢,, 1is a time instant during climb, t4, a
time instant in dcescent measured positive in :Rn
backward time direction, and topyg 18 the time
spent in cruise. To yield the same optimum trajec=~
tory, the Hamiltonians of Eqs. (16) and (33) must

become identical. This requirus that Yy = =) in
Eq. (16) be zero, or from Eq, (22),

C M, +C

£t _t.o (36)

\(Bc) = min
Ve ¢

that minimizes the
have

At the value of V. = V..,

operand in Eq. (365. ve must
€, = e, (37)

But from Eq. (34), We = Wey, ;i therefors,

Cp = ~CeWemin(Ec). When cﬂiu exprassion for C¢ dis

subscituted into Eq. (36), the minimization operation
does indeed yield ) = 0 at the minimizing value of

Ve. Thus, at each vruise energy E, a time cost
computed from
cc(zc) - -;1n CEHf (38)
e
will yield the maximum delay trajectory, The trans-

versality condition (Eq. (35)) transforms to the
following expression:

{H+ dc(dﬁfun(ic)/dzc)) =0 (39)

Examples of optimum delay trajectories com~
puted by the procedure described here as well as an
alternatative derivation can be found in Ref. 8.

Examples of Optimum Trajectories

This section presents several examples of fuel
and cost optimum trajectories. Additional examples,
including the effects of winds and of air traffic
control constraints, are given in Ref, 7.

Minimum Fuel Trajectories. Figure 9a shows

examples of minimum fuel trajectories for ranges of
100, 200, and 1,000 n. mi, The lift, drag, and
propulsion models used in these examples are repre-
sentative of the Boeing 727-100 equipped with

JT 8D~7A engines. The takeoff weight is 150,000 lb,
winds are zero, and the atmospheric model is the
1962 ICAO Standard. For the 200-n. mi. ranga, both
the constrained~thrust (solid line) and the free-
thrust (dashed line) trajectories are shown. Also,
for the 200-n, mi. range, Fig. 9b shows the corre-
sponding altitude versus airspeed profiles. The
constrained-thrust trajectories for the 100- and
200-n, mi. ranges contain short cruise segmants
below the optirzum cruise altitude of 32,000 fe.
Cptimum cruise altitude is reached for ranges
greater than about 230 n. mi. For the !,000-n. mi.
flight, the optimum cruise altitude increases at a
rate of about 2.5 ft/n. mi., because of fuel burn
off. Differences between the constrained- and free-
thrust trajectories are apparent only near the top
of the climb, where the free-thrust trajectories do
not contain a cruise segment. The difference in
fuel consumption between the constrained- and
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Fig. 9 Minimum-fuel trajectories.

free-thrust trajectories for the 200-n, mi. range

is 23 1b out of a total of 4,800 1b. This rela-
tively small difference would seem to justify the
computationally simpler constrained~thrust mode,
espacially in an on-board implementation. The simi~
larity of the climb and descent profiles for dif-
ferent ranges also offers opportunities for
simplifying the on-board algoritha.

Evaluation in Piloted Simulator. Frequently
the question is asked how much fuel use and costs
can be reduced by using on~board flightpath opti-
mization {n airline operations. For several
reasons, this question is not easy to answer.

First, there does not exist a standard reference
trajectory for comparison. Second, there can bea
significant variations in flight techniques between
different pilots. Third, it is difficult to achieve
repeatability in trajectories because of unknown
disturbances from weather and air traffic control.
Realistic evaluations, therefore, should include
statistical analyses of savings from a large number
of crial flights. Here we excerpt results from a
limited evaluation, using a piloted simulator.®

The constrained-~thrust version of this algo-
rithn was implemented on a DC-10 simulator and
integrated with flight director and autopilot sys-
tems. Qualified DC-10 airline pilots first flew
the simulator on a 220-n. mi. flight in a manner
recommended by their airline flight manual. Then
they repeated the flight, uring the flight director



to tollow trajectories generated in real time by the
algorithm. Three reprusentacive trajectnries from
thesa simulator tlights iare plotted in Fig, 10 as
altitude versus fuel consusad, Note thet takeoff
and touchdown altitudes are ),000 ft and 100 ft,
vespectively, corresponding to the ultitudes of
runways at the particular city pairs used in the
simulacor flighes.
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Fig, 10 Standard airline procedure compared with
fuel- and cost-optimal trajectories, 220-n. mi,
tange.

The fuel connumed and £light time for the stan-
dard atrline procedure were 9,500 lb and 37 min,
respectively, Cruise altitude was 24,000 fc. The
fuel-optimum trajectory climbed stseply and more
slowly to 32,000 ft, whereupon it began immediately
an idel-thrust descenc. The fuel consumed and the
f1ight time were 8,750 lb and 42 min, resprctively.
The fuel saving of 750 lb, or BX of cotal fuel, is
highly significant in airline economics where sav-
ings of only 1% are considered (mportant. On the
other hand, the increased flight time may be unde-
sirable, but reflects the fact that the cost of time
is assumed to ba zero in the fuel optimum case. To
eliminate the time-fuel trade-off from the compari-
sons, a cost-optimum trajectory was flown with the
time-cost factor Cp selected so as to achieve the
same flight time, 37 min, as the standard airliro
procedure. This trajectory required 9,150 b of
fuel. Thus, even at fixed arrival cime the optioum
trajectory reduced fue! consumption 350 lb, or 3.7%,
relative to the airline standard procedure. Clearly,
the fuel consumption difference at fixed arrival '
time provides a useful measure of the efficlency of
an airline flight procedure. Fuel savings on
longer-range flights were similar in n.gn{tudc but
luss when expressed as a percentuye of total fuel
consumed .

Pilots judged the optimum trajectoricy flown
with the aid of a flight director no more difficult
to fly than the standard procedure. They considered
the cost-optimization feature an essential element
of a future on~board system, Variations of this
algorithm have been incorporated in performance-
nanagement systems being built by several avionics
manufacturers.

Terminal=Avea Flightpath Minagesunt

Terminal-area | iightpath managemsnt problems
are conceptually and analytically wmore diffivule
than the en route probleme discussed In the preced-
ind section. Thair complexity arises from the
dynamically more complex models required tor synthe-
sizing efficient and flyable trajectories The
synthesis problem cun be stated as specifying an
algorithm for generating & trailectorv from an
arbitrary infitial stace vector (X¢.Y{.hgHg.Vyg) to
a final state vector (X¢,Yg,he.He,Vg'  This
so-called capture trajectory problem is illustrated
in Fig., 11, Note that in tha tigure the final point
lies on a backvard extension vl the tunway ceiter-
line and that the tinal heading is vqual to the
runvay heading. The discance ‘rom the final point
to touchdown is pilot-wpecified The rapture algo-
rithe must synthesize erfficieunt trajectories
rapidly and without failure for a wide range of
iniclal and final state vectory
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Fig. 1l The capture trajectory problem in the

terminal area.

At the present it {s not teasible to implement
the optimal control solution tor this five-state~
variable problem, as we were able to do for the
one-state-variable en rouce case. Nevertheless,
optimal~control theory played i crucial role tn
deriving the algorithm. It was firat used to derive
the structure and characteristics of extremum tra-
jectories (those that satisfy necessary conditions
of optimalicy; see Ref. 4) for ‘wo reduced-urder
subproblams of the original five-state-~variadle
peroblem. Then some of the derived characteristics
were incorporated in the design of the algorithm.

Thus, the first step in deriving a praczical
algorithm {s to separate the synthesis into two
essentially independent problems that can be solved
in sequence, The first consists of synthesizing a
horizontal plane (two-dimensional) trajectory that
connets the initial position and heading (Xy,¥;.Hy)
to the final position and heading (X¢.Ye,Hg). The
second consists of synthesizing airspeed and alti-
tude profiles that connect initial and final speeds
and altitudes (V4,hy) and (Vg,hy), respectively,
along the known horizontal path. This technique
wvas described in Ref, 10 {n connection with a study
of four dimensional guidance and has been refined



several times.!'*}? Although wach subproblem is
independently optimized, combining the trajectories
from .hs two subproblems doea not generally yield
optimum solutions to the original problem. Never-
theless, trajectories for the most frequently
encountered initial conditions have been found to
give performance reasonably close to the optimusm.
Most importantly, piloted simulations and flight
tasts have shown that the efficiency of the computed
trajectories exceeds that of pilot-generated flight
paths.

Synthesis of Horizontal Flight Pat

Horizontal plane trajectories ara chosen to
minimigze the length of the path or, equivalently,
the time to fly at constant airspeed and zero winds.
This problem can be formulated as a minimm time,
optimal control problem with state variables X, Y,
and H, and with bank angle ¢ as the control
variable. Analysis shows that the extremum trajec-
tories consist of an initial turn, followed by
either a straight line or another turm in the oppo-
site direction, and a final turn.’’ Tums are flown
at maximum bank angle (dpax)s and the mivimm turn
radius Ryy, s computed from the relation

Rn ™ V:/s can ¢ .. (40)

where V, is the ground speed. A representation
of the solution in terms of maneuvering rvegilons
covering the entire thres-dimensional state space
is given in Ref, 14.

The computationally most efficient solution and
one that has been implementad in a flight system is
based on a set of closed-form equations for comput~
ing all possible extremum trnjcctoriol.‘ For each
sec of initial and final conditions, the algorithm
computes up to six different extremum trajectories
and then chooses the one with the shortest path
length. The minimuw turn radius for each turn is
specified separately in the algorithm, using
Eq. (40). Since airspeeds and ground speeds will
not actually remain constant, an estimate of the
maximum ground speed is used in Eq. (40) to ensure
that the chosen turn radius will not cause ths bank
angle limit to be exceeded. A conservative estimate
for the maximum ground speed is the algebraic sum of
the maximum airspeed in the turn and the wind speed.
Note that estimating the maximum implies a weak
interaction betwveen the assumed independence of the
horizontal and vertical synthesis problems.

The horizontal capture algorithm, combined with
continuous display of the trajectory on an alectronic
map, has received many favorable comments by flight-
test pilots. Furthermore, it can be used as a sub-
program in algorithms for computing variable-radius
turns and trajectories through a sequence of way-
points. For these reasons the derivation of the
algorithm {s included in the appendix.

Synthesis of Airspeed-Altitude Profiles

The dominant feature of the airspeed-sltitude
profiles in the terminal area is the deceleration
and descent segment to achieve landing approach
conditions. In this segment, the flaps are extended,
and, for certain types of V/STOL aircraft, the thrust
is vectored to increase drag and to compensate for
diminished aerodynamic 1lift at low spead. Similar
changes, except in reverse order, occur in the

12

takeoff and climb-out profiles. Clearly, the opti-
mization of such changes in aircraft con{iguration
is an integral part of profile synthesis.

Both optimizaction of the configuration ¢nd the
synthesis of efficient profiles can be handled with
a reformulated version of the energy-state model
developed for the en route case.

The energy rate, ¥q. (6), can be written in
the form

dE _dh _ V 4V
at 2?4-.‘“ (4l)
By using the relation dh/dt 3 Vy 4in Eq. (41) and
dividing Eqs. (6) and (41) by V, we obtain two
expressions for a quantity » defined as the
normalized energy rate

tn = [T(n)cos(a + v) = D(a,b,,VIA  (42)
R T (43)

with L =¥ as a constraint. The cos(a + v) fac-
tor accounts for the possibility of thrust vactor-
ing. Equationa (42) and (43) provide a simplifying
dichotomy in the profile synthesis. At a particu-
lar airspeed the (normalizid) energy rate is first
determined from Eq. (42) by choice of appropriate
controls, including thrust T, thrust-vector sngle
v, flap angle &g, and angle of attack a. Then,
the chosen energy rate becomes an input to Eq. (43),
which determines the airspesed-altitude profile by
specifying either vy or dv/dt.

Since & conventional sircraft has three con-
trols and a typical V/STQL aircraft has four to
achieve a specified energy rate, we have an excess
of one and two controls, respectively, over the
minimum nusber needed for a unique simultaneous
solution to BEq. (42) and L =W at a given altitude
and airspeed. These extra degrees of freedom in
the controls can be exploited to minimize thrust
and, therefore, fuel flow at every specified energy
rate, altitude, and airspeed. This optimizacion
problem is restated in equivalent form as the maxi-
mization of energy rate for a given thrust setting:

T-D
W

E (r) « max
n v.m.df

(44)

with constraint L(mw,v,a,5¢) = W. The maximization
wust also obey various inequality constraints on the
controls, such as limits on the flaps, the angle of
attack, and thrust-vector angle. We may interpret
the maximization operation as a tachnique for col-
lapsing the multiple controls into the single
variable E.

The lower bound of energy rate attainable by
choosing the controls by the process of Eq. (44) is
the maximum energy rate attainable at miniomm- or
{dle-thrust setting. (In a V/STOL aircraft, at low
speed, the minimm thrust may be higher than idle.)
However, more negative snergy rates, if the aircraft
can attain them, must also be generated by the
model in order to encompass the entire flight enve-
lopa of the-zircraft. For an ailrcraft without
thrust vectoring, such rates are obtained simply by
increasing the flap augle bSayond the optimum



obtained from Eq. (44). For a V/STOL atrcrafc with
thrust veccoring the problem iy more complex, o
this case, the lntroduction of 4 second criterion,
vhich ainiwizes the thrust deflection angle for
dach spacified encrgy rate, helps to generate the
remainder of the uctainable enargy rvate region,

In a practical fmplementation of this procedure
for a vectored-thrust STOL atrcrafe, che fupctional
relationn bhetveen the anergy rate and the optimized
controls are precompuctad and stored in the on=bvarvd
vomputer in multidimensional tables.'® Interpoli-
tion of antries in the tables Jetarmines the optisum
controln for apecified values of energy rate, aiv-
speed, altitude, ambient temperature, aircraft
velght, and bank angle. By nondimensionalizing and
combining some of thene variabhles, the stovage
requirement for the tables was reduced to only
600 words, even tor the relatively complex vectored-
thrust STOL adrvcraft, The storage requiremant would
be considershly luoss tor u conventional jet trane-
port ajrcraft., A simplified vermion of these tables
for the STOL aircraft uxample iy given in Fig. 12
us plot- of maximum and minisum energy rates, bnnn
and Epmin Versus the squivalent airspeed,

Enmax AND MAX THROTTLE
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A
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Fig. 12 Envalope of energy rate for a vectored-

thrust STOL aircraft:
standavd temparature.

W = 38.000 1b, saa level,

After developing the asthod for selecting the
controls, we can now procead with the synthesis of
the profiles. In principle, this problem is f{denci~
cal to the fixed-range, en route probleu previoudly
solved, However, the short ranges and variety of
oparational conmeraints characteristic of terminel-
area flight juscify a almplified approach based on
matching the general characteristics of optisum fuel
airapeed-altitude proftles. Wo briefly explain the
cacionale for this method with reference to descent,
which {a the most difficult case.

Minimum fuel descent trajectories such as those
illustrated in Fig. 9 are characterized by a mono=
tonic decrease {n energy from cruise until the
specifiead final (landing) atlrspeed apd altitude are
mets Furthermove, at terminal~ares altficudes below
10,000 ft, the trajectaries first dascend at
approximately conscanc indicated airepeed of
240 knots (tor a Boeing 727) and {dla throttlae to
the landing altitude. The descent is followed by
rapid decaleration to the landing spaed at nearly

constant altitude. lowever, vbatructions and notse
restrictions along the spproach path usually de not
peruit level-flight deceleration at low alcicude,
Inatead, the decelorvation (s pertormed {n shallow
descent or in level (light at sititudes between
1,000 and 2,000 ft above the ruuwvay,

To provide flexibility in the shaping of the
profiles during siwmuiltaneous deceleration and
descent, families uf decreasing (and by extension,
increading) energy profiles are ganerated as a
functton of two parameters, v and ¢, The (irat
paramater, 0, selects the fraction of minimum
(maximum) available unergy rate. Bogine (Enmax) to
e used for docrclutn {{ucreasing) energy. The
vaiues of h“.‘n and !“3. are precomputed and
stored at each indicated sirspeed, an praviously
explained, The macond parametar, ¢, detarmines
the fraction of the selected energy rate to be used
for deceleration (acveleration) Then, for particu-
lav choices of o and ¢, the enurgy rate, aivspeed
rata, flighcpath angle, altitude rate, snd ground
spead are computed as followe:

gn - .n‘-:“‘m . 0D ga ¢ (45)
Ve bk, 0swsl (46)
Y= (‘ - C)t“ (‘7)
ho=Vy (48)
k= Vcosy+V, (49)

Note that n<0 and ¢
ation wichout descent; ¢ = 0
out deceleration; and 0 « ¢ ¢ provides simul-
tanevus decelaration and desceént, Minimum fuel
descent at altitudes nearly the same as landing
altitudes usually requives following the min
contour in the energy-rvate cablos, Thus, the opti-
oum value of o 4is unity., Howsver, for some air-
craft, such as the vectored-chiust STOL type men-
tioned previcusly, the optioum value may yield
snergy rates too negative for safe operation, A
value less chan | is alno necessary to reserve a
marsin for closed-loop control along the computed
path, A practical uppear limit for o is about 0.9.
Furthermove, maximum deceleration and descant limite
are aluo enforced during profile syntheatis,

provides deceler-
irovides descent with~

‘The structure of the profiles is modeled after
that (n Flg. 2, excupt that an additjonal constraint
is imposed. An aivcraftr {lying in tho terminal avea
is generally not allowed to climb above its initial
spproach altitude hy for the purpose ¢f optimizing
the trajectory. Rather, it must hold this altitude
until starting the descent for landing. However,
while flying at altitude hy, it way change to &
fual-afficient terminal-area airspeed V. For the
STOL aircraft, V¢ 7 140 and for a jet tranuport,
such as a 727 V., ¥ 240 knots IAS., Anothar cri-
terion for choosing V. is to maet a epecified
landing time, as required in four-dimensional
guidance applications.

The various rules above ¢an now ba combined
to generate complete profiles. The synthaais begine
with Che backward time integration of Eqs. (46),
(48), and (49) from final conditions hg, Vg, using
the spacified 0o and ¢. If the altitude veaches its
target value of hy before the airspead reaches its



target value of Vi, we set ¢ = | and then con-
tinue the backward time integration until the air-
speed has also achieved its target value. When
setting ¢ = ], the flightpath angle is forced to
sero and the snergy rate is used entirely for accel-
erating (in backward time) toward V. On the other
hand {f the airepeed reaches its target value before
the altitude does, we set ¢ = 0. 7This stops the
airspeed change and causes the energy rate to be
used entirely for increasing the altitude toward ite
target value of hy, When the second and last
variable reaches its target value, ve set o = 0,
that {s, &, « 0, chus completing the backward time
integration. Next, ve begin a forward time integra-
tion from *he current aircraft posicion to get the
distance required to change spaed from V; to V.
with ¢ = 1. Lat the distancez for the backward

and forward integrations be dip and dyg, respec-
tively. A valid trajectory has been generated if
the cruise distance d,, computed from

de = d¢ = dgp - di¢. is nonnegative, chat is, 1f

d; < 0. If d; is negative, the synthesis has
failed, because the aircraft is tov close to the
capture point Pg. For purposes of on-board imple-
mentation, the important feature of this algorithm
is that it synthesizes an efficient trajectory in a
single integration,

Figure 13 {llustrates the various segments of
a synthesized approach trajectory for a STOL air-
craft, witch o =1 and ¢ = 0.5, We assume for
simplicity that Eny,. = -0.13, a constant, Other
paraneters are indicated in the figure, Note that
the initial descent at y = -7.5° reducas to
y = =3.75* in order to ailow the aircraft to decel-
erate to the landing spead of 100 ft/sec.

me
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Fig. 13 Example airspeed-altitude profile for a
vectored-thrust STOL aircraft.
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The algoritha also corrects the airapeed decel-
eration for known wind shears, vhich are computed
from & knowledge of Vy(h) if available. The wind-
shear correction factor is

AV = «(dV, /dh)Vy

vwhich i{s added to the right side of Eq. (46) to
obtain the wind-shear-corrected airspeed rate.
Furthermore, the reference controls are corrected
for the effact of nonzero bank angle on induced
drag by modifying the veight in the iift equation
as follows: L = W/cos ¢.

Integration time-steps vary during syntheais.
During turns, decelerations, and accelerations it
is | sec; during altitude changes at fixed speed
and heading it is 5 sec. Total time for synthesisz-
ing a complete trajectory consisting of a complex
horizontal path, such as that shown in Fig. 16 in
the Appendix, and an airspeed-altitude profile,
similar to the one shown in Fig. 13, is about 2 sec
on the particular airborne computer used in a
recent flight experiment. This computer has an add
tima of 6 usac and a wmultiply/divide time of
24 usac. When the trajectory synthesis is time-
shared with navigation and other necessary computa-
tions, the computing time increases to about 6 sac.

Noncircular Capture Trajectories

The computational simplicity of the preceding
algorithm depended on the a priori meparation of
the synthesis problem intc (nearly) independent
solutions for the horizontal paths and aivapeed-
altitude profiles and on the choice of simple geo-
metric forms for horizontal paths. Recently,
Kreindler and Neuman'’ gtudied fusl-optimum capture
trajectories under less restrictive conditions.
For trajectories containing a fairly long straight-
line segment between the {nitial and final turms,
they found that the extremum trajactories had
approximately the following characteristics. As
before, the airspeed in the straight-line segment
tenda to ba close to the ainimum-fuel-per-unit-
distance speed. However, the final turn is flowm
at maximum bank angle while the aircraft is decel-
erating to the landing speed. Equation (40) shows
that the resulting turn is a spiral of decreasing
turn radius. For turns with large heading changes
(~180°) this saves fuel by reducing the time and
distance flown.

The horizontal capture algorithm for circular
turns can be used in saveral sreps to generate
approximately constant-bank-angle spiral turma, as
shown in Ref. 18. The method is illustrated in
Fig. 14. For simplicity, assume that the inicial
turn has fixed turn radius Ry. Using Eq. (40)
calculate R, at Pg for a bank angle a few

degraas A¢ less than dgay and Vg = Vg + Vy,,
% (9
D!cl::lrlﬂno
SEGM!
® )

Py

Fig. 14 Illustrating construction of noncircular
final turm.



where Vg, is the vind-speed component in the final
heading direction. Then calculate the circular
horjsontal path with final turn radius R¢ = R,.
haxt integrate the speed, altitude, and range equa-
tiwns, Eqa. (46), (47), (48), and (49) backward

from Pg¢ until the ground speed Vg, 1is such that

? » dggax With radius R,. This completes the first
step. xt cthat point compute a new and larger turm
radius R, using Vg o V; + Vy., where V, and Vy;

are the airspeed and along-track components of the
vind-speed vector at the end of the first step.

Then apply the circular-turn algorithm a second

time and resume the backward integration. Continue
stepping the tum radius until either the cruise
spead is achiaved or the beginning of the final tumn
is reached during the backward intagration. In the
example of Fiz, 14, four such steps wvers necessary.

Obviously this horizontal path algorithm
requires somewhat more computations for each syn-
thesis. The apeed of the available on-board com-
puter will determine if it can be used in an
application.

System Implementation and Tlight-Test Results

The on-board implementation of the system is
based on two modes of operation. In the first mode,
referred to as the "pradictive" mode, new trajec-
tories are synthesized one after the other as
rapidly as possibla. Upon completion of each syn-
thesis, the system checks to determine vhether the
piloc has called for the second, or "track" moda to
ba engaged. If such is the case, the predictive
mode {é terminated. Then the most rscently synthe-
sized trajectory is regenerated and tracked in real
time by a closed-loop guidance law.

The pilot activates the predictive mode by
selecting a waypoint to be captured on a fixed tra-
Juctory, which is prestored. Synthesis of the cap-
ture trajactory begins after the navigation system
has computed the current position and velocity com=
ponants of the aircraft. The first step in the
synthesis computes the horizontal trajectory param-
wters; it is alvays successful. The second step
computes the airspeed and altitude profile; some-
times it can fail. For example, L{f tha horizontal
path is very short and the difference in enexgy
batween initial and final positions is large, a
flyable trajectory along that path may not exit.
However, & failure to synthesize is unlikely in land-
ing approaches initiated several miles from the
capture point, the usual situation. If it occurs, a
diagnostic message is displayed to the pilot indi-
cating the reason for the failure. After a failure,
the algoritha automatically repaats the synthesis
procuss, using updated position and velocity vectors.
Also, the pilot can always correct the failure to
synthesize by flying the aircraft away from the cap-
ture point or by selecting a more distant waypoint.

Syncthesized trajectories are displayed to the
ptlot on a map-like cathode ray display called a
multifunction display (MFD). Figure 15 gives an
example of trajectories displayad on the MFD, The
pilot has selected waypoint 3 on the tixed trajec~
tory (drawn solid) as the capture waypoint. The
dashed-line trajectory starting at aircraft position
P, indicates to the pilot that a valid capture
trajectory has baen synthesized. In the example the
pilot did not engage the track mode at P, but
{nstead flew the ajtcraft i{n the direction of P,.
Between P, and P; the dashed capture trajectory
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Fig. 15 Horizontal flightpaths displayed on multi-
function display.

vas refreshed approximately every 6 sec. With the
new generation of airborne computers, the refresh
rate, vhich is determined by the spaed of synthesis,
can be increased to a more desirable once-per-second
rate. When the aircraft reached P, the pilot
elacted to engage the track mode, causing the last
capture trajectory to be frozen and redrawn as &
solid line on the MFD. At that time. closed-loop
tracking of the frozen capture trajectory was
initiated.

It should be roted that in the track mode, the
synthesized trajectory is not refreshed, though
this say ba desirable i{f winds or transients in
navigation introduce large tracking errors. The
softvare of the on-board operating systes has been
configured to add this capability in the future.

Closed~loop tracking is performed by a pertur-
bation guidance law specifically designed to operate
in concert with the output of the trajectory synthe-
sis algorithm. Perturbation states in the feedback
lav include errors in airspeed, altitude; flightpath
angle, and cross-track position. Controls are
thrust, thrust angle, pitch, and voll angle. The
feedback law was designed with the help of quadratic
optimal synthesis techniques and thus Jdiffers in
several respects from conveniional autopilots.
Details of the design for a vectored-thrust STOL
aircraft are given in Ref. 12.

A powered-lift, vectored<thrust STOL aircraft,
referred to by NASA as the Augmentor Wing Jet STOL
Research Alrcraft, was selectad as the test vehicle
for evaluating the concept. This aircraft is
equipped with a pgeneral purpose digital computer
and flexible navigation and control systems. The
complex asrodynamic and operational characteristics
of this aircraft presented major challenges in the
design as vell as opportunities for demonstrating
the value of automated flightpath managesent. One
test sequence compared the fuel consumption of a
synthesized and a pilot-flown approach trajectory.
Both approaches bagan at tha same initial distance-
to-touchdown (40,000 ft), airspeed (140 knots), and
altitude (3,000 ft). The pilor-flown approach vas
sade with the aid of a flight director system. The
automatic approach consumed 381 ib of fuel, and the
manually flown one consumed 500 1b. The difference



betveen them t{s considered fairly representative
over & wide range of initial conditions.

Concluding Remarke

Trajectory optimization vccurs as an essential
step in the design of on-board flightpath management
systems. Optimal control thoory provided the neces-
sary analytical framework for gaining insight into
the charactaristics of efficient solutions and for
unifying diverse problems. Howvever, the derivation
of practical on-board algorithms was wmore strongly
dependent on physical reasoning ind on judicious
simplifications of tha problem than on exact imple-
santation of optimal-contyol theory. 1Ia practice,
the critical test of an algorithm is not wvhether it
is optimum in a mathematically pracise sense, but
whether it can consistently outperform its competi-
tor, vho in thia case is the unaided piloc. Simula-
tion and flight tests have shown that both the
en route and the terminal-area algorithas meet this
criterion,

Nevertheless, since the techniques described
here are firat-generation solutionas, opportunities
are sbundant for further improvemants in performance
and for automation of other difficult pilot tasks.
Chief among such tasks are following behind an air-
craft at a specified minimum distance and merging
smoothly into a stream of aircraft on landing
approach. Attention also needs to be given to
integrating the en route and terainal-ares flight-
path management algorithms.

The potential for computer-directed trajectory
management in military applications ie widely recog-
nozed, but on=board algorithms that outperform an
experienced pilot in, for example, typical air=-
combat situations ars far more difficult to obtain.
In the near term, promising areas for applying the
approach developed here are in automsted guidance
of remotely piloted vehicles and in noncombst flight-
path management.

Appendix

The expressions for synthesizing horizontal
capture trajectories for flying an aircraft from a
given initial position and heading to a specified
final position and heading in a minimum distance
are derived below.

Turn-Straight-Turn Trajectories

‘The turns are arcs of circles and the straight
partion of the trajsctory must be tangent to the
initial and final circles. Since the initial and
final turns may be either clockwise or counterclock-
wise, there are four possible combinations of turn-
ing directions, two with the initial and final turne
in the same direction and two with them in opposite
directions. Figure 16 illustrates one solution of
each type. If a given pair of circles is entirely
separate, that {s, if no part of one circle lies
within the other, it is possible to draw four tan-
gent lines between the pair. However, vector D
along the tangent line from the initial to the final
circle coincides with the direction of rotation at
both tangent points for only one of the four tangent
lines as shown in the figurs.
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rig. 16 Turn-straight-turn cases.

In Pig. 16, the final position and the origin
of the coordinate system are located on the runway
cencerline; howaver, the derivation is for arbitrary
locations. Furthermors, all variables are defined
so that the derivation applies to all possible
combinations of turning directions.

Figure 16a 18 for the case in vhich both turns

are in the same direction, and the tangent vector

does not cross §; in Fig, 16b, the turns are in
opposite directions, and D crosses §. Initially
the aircrafe is at (X{.Ys) {n some inertial Car-
tesian coovdinate system with heading Hy, defined
as poaitive clockwise fros the X-axis, and V, 1is
a unit vector in the direction of the velocity.
The vector distance from (X(,Y;) to the center of
the turn {s given by 0,R, "whera R; 1is the radius
of turn, and is a unit vector normal to V,
and positive to the right of ¥,. Tharefore, the
vector from (X{,Y;) to the centar (XC,,YC,) is
R,0; for a right turn and -R,0, for a left turn.
The directions of the turns are accountad for by
vriting the radius vector as R;S,{i,, where S = +1
for right turns and S, = -1 for left turne. Simi-
larly, the direction of the final turm is denoted by
S;.

The aircraft moves along the circle from
(X{,Y4) to cthe tangent point (X,,Y;), vhich las &
radius vector R,S;U;. The tangent vector from
(X;,¥;) at the end of the initial turn to (X,,Y,)
at the beginning of the final turn is D. The
radius vector at (X,,Y,) is_ R,S,U,, but since 0,
and ¥y, must be normal to B, 6, » 0,. Likewise,
the headings H, and H, at the two tangent points
are equal. The final turn ends at (Xg,Y¢) with
heading H¢ and radius vector R,S,0,.

Using this notation we can write
5 + R:a:s: L] R‘ﬁasl + 6
or

q =D+ Uy(r,S, - R;S;) v (A1)



and, therefors, since D and 0, are perpendicular,

Dz |B| » QT - (RS, - R;8,)% (A2)
vhere by definition
Q i [§] = /TXC; = XC,)7 + (YC, = ¥C;)¢  (AI)

[t can be seen from Eq. (A2) that no real solution
exists £ Q < [R,S, - R;5,|. When the turs are in
opposite directions, Sy = =S;, and there is no real
solution for Q < (R, + R;), that 1s, 1f the circles
intersect. On the othar hand, for rotations in the
same directions, S, = S,, and a real solution exists
unless Q < |r; - R,|, that is, unless ona circle
lies entirely vithin the other. From geometric
construction it can be shown that there alvays exist
at least two real solutions. From the definition of
the radius vectors, one can write for the real

solucions:
a8, ( )

RyUSy = (

Equating Eqs. (A4) and (AS) gives

=R;S; sin N
3 1 (A%)
R,S, cos Hy

)

and

o (AS)
XC, = Yy¢

XC, = X; - R;S, sin
(A6)
YC, = Y, + RS, cos
Similarly,

xc: - xf - R:S, sin “!

. (A7)
R

YC; = Yp - RS, cos

£

The radius vectors at the tangent
in the sam¢ manner to compute the

points can be used
components of

8y and Ry
X, = XC, + R;S, sin H, (A8s)
Y, = YC, - RS, cos N, (A8D)
X, = XC; + R,S, sin H, (A9a)
Y, = YC; - R;S; cos H, (A9b)

Subtracting (A8a) from (AYa) and (A8b) from (A9b)
gives the components of D:
X, - X, ® XC, = XC, + (R,S, - R,S,)sin H,
) (A10)
~ YC, = (RyS, =~ RyS,)cos H,

]
Y, - Y, = YC,

Another expression for the components of D is:

X, - X, = D cos H, ity

Y, - Y, =D ein ¥,

1]

Equating the corresponding pairs in Eqs. (Al0) and
(Al1l) gives
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D cos By = (XC, - XC,) + (R.S, - R.S,)stn N,
D sin K, = (YC, = YC,) - (R.S, - R S,)cos W,
(A12)

:qu.tiou. (A12) can be solved for the tangent of
::
(YC, = ¥C;)D ~ (R;8, - R,S,)(XC, - XC,)
R Y s, - KT, )
(A13)

Equations (A6)~(A9; and Eq. (Al3}) completsly specify
a capture trajectory for any combinstion of S, and
S;. Howaver, the length of the trajectory is aleo
needed in order to datermine which of the feasible

trajectories gives the minimum distance, The first
turn angle {s
™, = (§; - W) + 2nCyS,
vhere
01t 5,(H, - Hy) 20
c, = ‘ v (Al4)
1468, (0, - Hy) < 0
and the second turn angle is
TR, = (Hg = H,) + 2nC,S
vhere
014f S, (He - Hy) 20
c, = ! (A18)
146 S,(Hg - Hy) < 0

Finally, the total length of the capture path is

do = [B] + rITR, . + m,TR, (A16)

Turn-Turn-Turn Trajectories

There are at most four turn-turn-turn-type
trajectories for the horizontal-capture problem;
nswaly, tvo each of the right-left-right and left-
right-left patterns. Howvever, we eliminate two of
them by requiring that the middle turn exceed
radians.

The problem is fllustrated in Fig. 17 for the
right-left-right pattern. The vectors in the figure

FINAL

X2 '3 ruaw

INITIAL
TURN

SECOND TURN

Fig. 17 Turn-turn-turn case.



sre defined as before, recognizing that in this case
S; = S;. To satisfy the requirement that the middle
turn exceed v radians, its center must be on the
opposite side of § from the straight segment of
the right-straight-vight solution shown for compari~
son. Furthermore, no three=arc solution exists for
Q>RI+R’+2I’0

Let be the heading of §, defined in the
text, and define a unit vector ¥, with hesding
angle, H, as follows:

.4
u.-HQ#er
Then U, 1s perpendicular to & and points in the
direction of flight where intersects the circles
of the initial turn. Form the law of cosines

Q* + (R, +R)2 - (R, +1)°

cos A' = 7q (i:‘.‘ R’) (Al7)
Q + (R, + Ry - (R, +1,)}
cos B' = 2 2 1 2 (A18)

2q (R, + Ry)
The direction of turn is accounted for by defining

A= SA (A19)

and

B = Sx” (AZO)

Using these definicions it can be seen from the
Fig. 17 that

(A21)

NN

e H° “B 4+

From the definition of H, and the equations derived
previously

sl('C2 - YCx>

stn B, = ——— (A22)
-S, (XCc, - XC.)
cos Hy, = - 2 2 (A23)

Equations (A21) can be used with double-angle trig-
onometric identities to obtain expressions for

sin Hy, cos Hy, sin Hy, and cos Hg, in tecms of H,,
A, and B. Changing appropriate subacripts in

Eqs. (A8) and (A9) gives

Xy = XC, + RS, sin Hg
(A24)
Yy = YC, - R,S, cos H
X, = XC, + R, S, sin H
(3 2 2”3 . (A25)
Y = YC, - R,S, cos Hg
The turn angles are calculated as follows
TR, = (g - H,) + 2nC,S, (A26)

where
0 if (Hl - llx)s1 20
C, -
LAf (Hy - H,)8, <0

18

TR, = (H, = Hy) + 2nC,S, (A27)
vhere
01f (H, - H)S 2 0
G " {1 1 (W, = NS < 0
TRy = (Hg - H,) - 20C,S, (A28)
where

c o {o 1f (Mg - H)S 20
?
14f (H, - H,)8, <0

The total length of the trajectory is therefore

d, » R |TR, | + R,|TR,, + R, ITR,:  (A29)

f

The length of trajectories for all feasible
pairs of S, and S, is computed and the trajectory
with the shortest length is selected. A FORTRAN
listing of the algorithm and some applicacions are
given ip Ref. 15,
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