

Rapid, Inexpensive Implementation

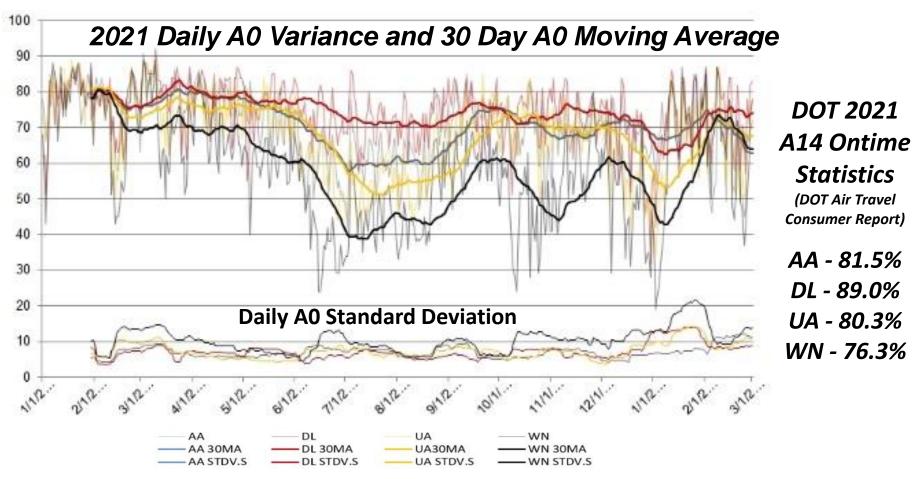
GreenLandings™ Landing Time Management

- 1. GreenLandings™ is inexpensive, fully developed, ready to deploy and easily crosses FIR and ATC sector boundaries.
- 2. What we are currently doing to prevent airline delays, congestion and excess CO2 is not working.
- 3. Delays, congestion and excess CO2 adds unnecessary stress to the airspace, ATC system, ATC controller, airport, airline, aircraft operator and pilot.
- 4. Because of the business needs of the individual airline/operator, only they can rapidly and efficiently prevent delays, congestion and excess CO2.
- 5. This problem costs an individual large airline \$5 Billion annually.
- 6. There is an inexpensive FAA, Embry-Riddle and GE Aviation operationally validated solution that can be implemented starting within months.
- 7. GreenLandings™ is an airport, airline or operator centric system solution that easily identifies/mitigates congested terminal/ramp/enroute airspace.
- 8. Finally, ATC is not the problem, or the solution.

Wide Ranging Benefits

GreenLandings™ Benefits

- Improved profits
- Increased on time arrival
- Reduced fuel burn, CO2 and NOX
- Increased crew and system productivity
- Reduced ramp congestion
- Better gate utilization
- Improved product quality
- Increased NPS and less passenger stress
- Reduced ATC complexity and costs

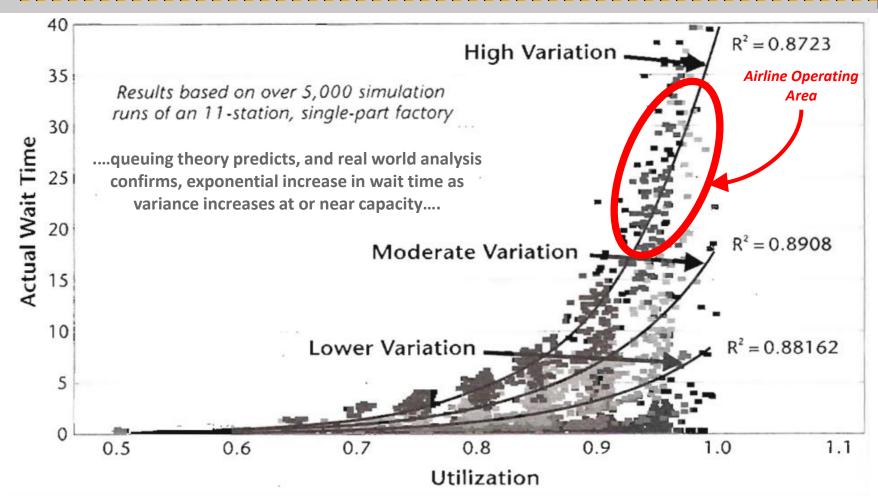

Each benefit pays for the program many times over. All benefits together make this a huge win for your passengers and shareholders.

Not Working!

Airlines have consistently delivered 30% of their customers late for the last 40 years. During this time:

- ATC has continuously promised delay/congestion relief
- ATC has literally spent \$100s of Billions
- Airlines have spent \$100s of Billions on new aircraft/avionics
- Yet, the ATC solution is always 10 years and \$100 Billion into the future. This was true in 1980, 1990, 2000, 2010, and still true in 2022.

Airlines Desperately Need To Solve This

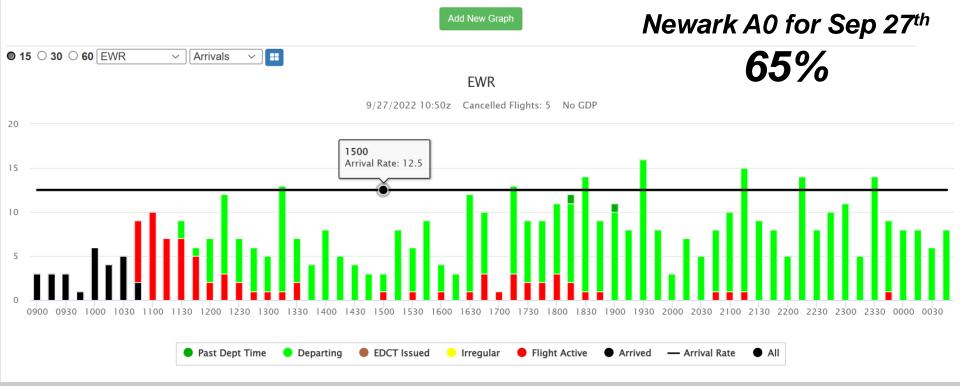


Customers Feel Variation, Not Averages

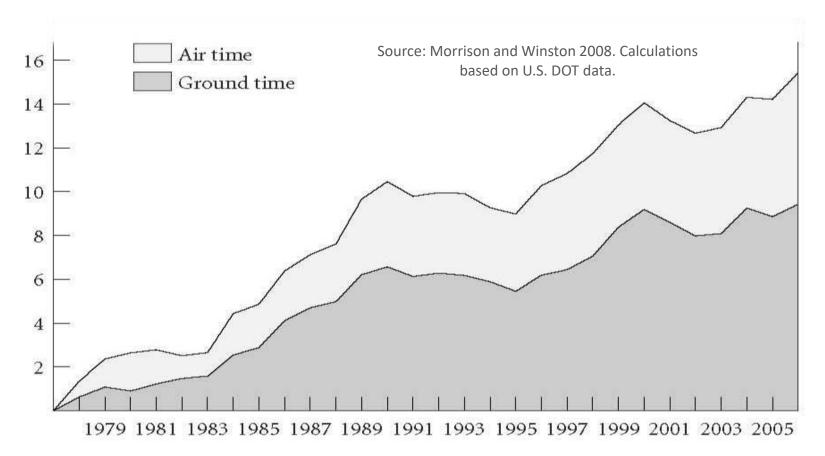
(Making Six Sigma Last, George Eckes, 2001)

Data/graph provided by AERA Air Ops View, RW Mann and Company and DOT Air Travel Consumer Reports

Standard Queuing Theory Applies


Higher variation contributes to longer wait times

Michael George, Lean Six Sigma, 2002

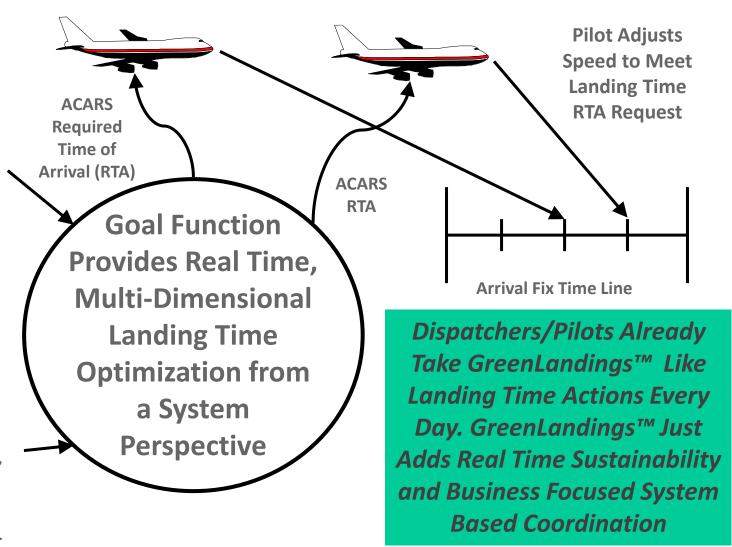

Capacity and Schedule Are Not The Problem

On Time, Uncongested Landing Capacity available forward in time

Increasing Block Time Institutionalizes Delays

"It cost approximately 8 to 10 airplanes per day if we add just a couple of minutes of block time to each flight in our schedule."

(Greg Wells, March 3rd, 2011 Chicago Tribune article)

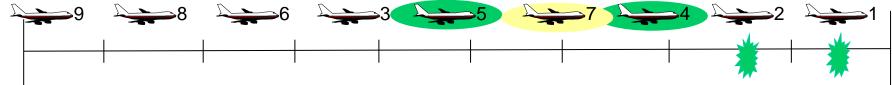

GreenLandings™ Ops Concept

Big Data "Day of" Predictions

Cornerpost, landing and gate ETA, enroute speed, altitude and path, weather, etc. (SWIM, Flt Plan, FMS, ADS-B/C, airport capacity, runway direction, etc.), starting hours prior to landing.

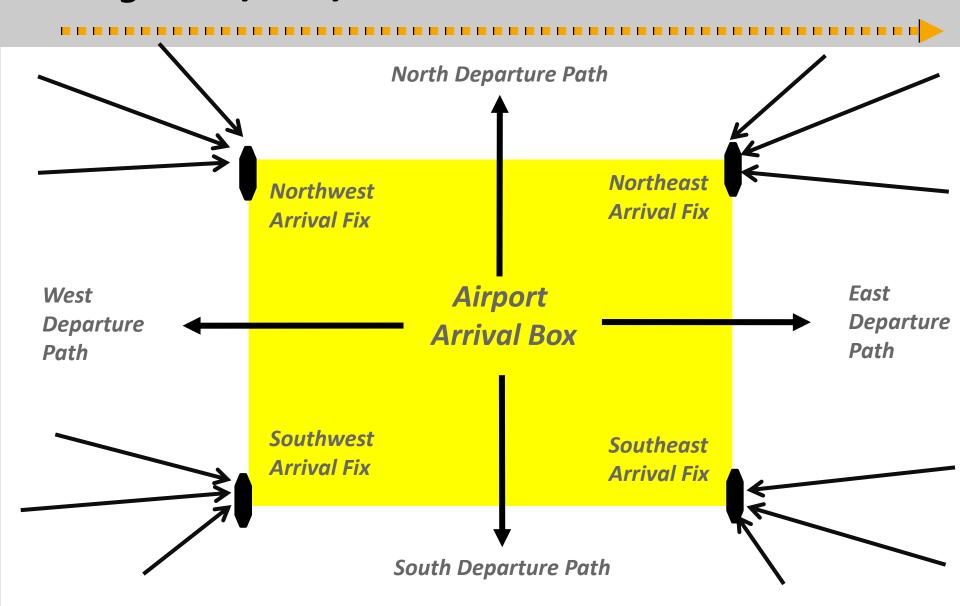
Airline "day of" Business Goals

CO2 Reduction, schedule, connections, gate availability, maintenance, crew legalities, weather, etc.


Copyright ATH Group, Inc., 2023-03 RMBaiada@ATHGrp.com, 303-521-6047

GreenLandings™ - Defect Prevention

1. Predicted Random, Unaltered Landing Times



3. GreenLandings™ Sequenced Landing Times

- Real Time airline goals considered by GreenLandings™ Process
 - Aircraft #1 and #2 are early, but benefit entire queue by moving forward
 - Aircraft #4, #5 and #7 are late but managed to early
 - Aircraft #3 is slightly ahead of schedule and may be re-sequenced to remain OT
- Capacity Spoilage and Recovery

Cutting Costs/CO2/Noise - Don't Overload The Box

Cost Reduction Opportunities

Single Airline Annual GreenLandings	Benefit Ana	alysis	
Preventing CO2, Defects, Fuel Waste and I	Productivity Loss	-	
Annual Crew Buffer Cost	\$	304,166,667	
Annual Defect Rework Cost	\$	113,150,000	
Annual Overnight Rework Cost	\$	169,725,000	
Annual Fuel Buffer Cost 800 LB	\$	937,145,672	
Annual Aircraft Lost Productivity Cost Gorilla	\$	3,090,333,333	
Annual Lower Ticket Revenue with Low A0 Quality	\$	226,300, 000	Primary inputs:
Total Single Airline Annual Buffer/Rework Cost	\$	4,840,820,672	•
			 4,000 flights
Annual Recoverable Crew Buffer Cost	\$	91,250,000	per day
Annual Recoverable Defect Rework Cost	\$	28,287,500	per day
Annual Recoverable Overnight Rework Cost	\$	42,431,250	 20 buffer mir
Annual Recoverable Fuel Buffer Cost	\$	281,143,701	
Annual Recoverable Aircraft Productivity Revenue	\$	618,066,667	per flight
Annual Additional Ticket Revenue with A0 Quality	\$	226,300,000	•
Total Annual Recoverable Buffer/Rework Cost	\$	1,287,479,118	 Recovery of
Total Annual Tons of Single Airline CO2 Generated		32,686,567	min per fligh
Total Annual Tons of Buffer/Excess CO2 Generated		4,358,209	• \$2.15/gallon
Total Annual Tons of Buffer/Excess CO2 Easily Prevented		1,307,463	φz.13/gailoli
Total Annual Fral (callene)		2.379 (57.717	
Total Annual Fuel (gallons)		3,268,656,716	
Total Annual Buffer/Excess Fuel (gallons)		435,820,896	
Total Annual Buffer/Excess Fuel Easily Saved (gallons)		130,746,269	
Total Buffer/Excess Aircraft Required		103	
Total Buffer/Excess Aircraft Easily Recovered		21	
Total Number of Buffer Pilots Required		1,333	
Total Number of Buffer Pilots Easily Recovered		400	

GreenLandings™ Actual Atlanta Results

August 2006 through October 2013

GreenLandings™ Delivers the Green for Delta Over \$74,069,046 Saved in Fuel Alone

• Fuel Saved in Gallons	30,091,899
• CO2 Reduction in Pounds	634,788,613
• Flight Time Saved in Minutes	1,662,726
Days of Operation	2,432
Slots Recovered	34.375

Independent Analysis

GreenLandings™ Actual Dubai Results

KEY METRIC	RESULT	
A0 Improvement (Passive to Active)	14.82 %	
A14 Improvement (Passive to Active)	12.04 %	
Dwell Time Reduction	2.98 Minutes	
Fuel Reduction	25,055 Kg / Day	

Actual Independently Validated Benefits

Table 2. Monetized Benefits Summary (for first year of operation)

		496 698		(%3),
	US Airways-CLT		Delta Air Lines-MSP	
	Active Phase 1	Active Phase 2	All Observations	Representative Days
Total System Costs	\$1,587,458	\$4,337,458	\$1,553,530	\$1,553,530
System Monetized Benefits	\$1,232,774	\$5,649,473	\$12,328,152	\$5,242,340
System Benefit/Cost Ratio	0.78	1.30	7.94	3.37
Total Participant Costs	\$1,587,458	\$1,587,458*	\$1,553,530	\$1,553,530
Participant Monetized Benefits	\$1,130,337	\$3,127,668	\$3,330,214	\$1,373,975
Participant Benefit Cost Ratio	0.71	1.97	2.16	0.88

^(*)One Airline Attila™ system

Block Time = Largest Opportunity to Cut Cost

Sample Value of Productivity Gains

Domestic Aircraft Only (727, 737, 757, DC10-10)

Average Daily Flight Hours (Block)

Average Number of Flights

Average Hours per Flight (Block)

Average Time Savings (all sources)

411 aircraft

10.85 hours/day

4.92 fits/day

2.21 hrs/fit

18.08 mins/fit

18.08 mins/fit x 4.92 fits/day x 1 hour/60 mins = 1.48 hrs/day/airplane

1.48hrs/day x 1fit/1.91hrs x 411 airplanes = 319 flights per day

100 pax/flight x \$160/pax = \$16,000 per flight (does not include cargo)

\$16,000 revenue/fit - \$5,000 direct cost/fit = \$11,000 contribution per flight

\$11,000 contribution/flight x 319 fits/day x 365 days/year =

\$ 1.3 Billion per year additional contribution

3ource: United Airlines

Note: Unaudited Data, for illustration purposes only

Additional Information

GreenLandings™ Articles and Videos

- ATC is Not the Problem (Managing the Skies, Spring 2022)
- <u>Aviation Needs a New Direction Driven by Vision and Leadership</u> (Managing the Skies, Nov/Dec 2019)
- GreenLandings™ Heathrow Interview (video 46:46, 2020-12-30)
- GreenLandings™ Independently Validated Benefit Summary 2022-05
- <u>Air Traffic Control Is Not The Real Cause Of Airline Delays</u> (Forbes.com, 2017-03-23)
- <u>Institutionalizing Airline Operational Dismality</u>, (Managing the Skies, Fall 2021)
- Fastest Airlines in the U.S. (Forbes.com, 2019-06-17)

Sustainability, Quality and Profits

- GreenLandings™ is critical path to Operational Excellence and rapidly benefits the airline, pax, environment, ATC
- GreenLandings™ focuses on *defect prevention* versus defect correction
- GreenLandings™ independently validated by FAA, Embry-Riddle, GE Aviation, Georgia Tech and others
- GreenLandings™ implementation at first airport in 9 months and system wide at all an airline's airports within 3 years
- GreenLandings™ require no new avionics, no new airborne/ground equipment and no new ATC procedures
- Immediate Benefits cash-on-cash ROI achieved in months